Browse Results

Showing 19,901 through 19,925 of 77,178 results

Dynamical Systems on Networks

by Mason A. Porter James P. Gleeson

This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on "simple" situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.

Dynamical Systems with Applications using Python

by Stephen Lynch

This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams.After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential.

Dynamically Structured Flow in Pulsed Fluidised Beds (Springer Theses)

by Kaiqiao Wu

This book analyses the use of a pulsed gas flow to structure bubbling gas-solid fluidised beds and to induce a special fluidisation state, called "dynamically structured flow", as a promising approach to process intensification. It explores the properties of bubbles rising in staggered periodic arrays without direct interaction, assessing their size, separation, and velocity, and explains how a highly uniform, scalable flow offers tight control over the system hydrodynamics. These features are desirable, as they not only bypass engineering challenges occurring in traditional operations, such as maldistribution and non-uniform contact, but also allow to decouple conflicting design objectives, such as mixing and gas-solid contact. The thesis also presents computational simulations which reveal the periodic transitions of the particulate phase between fluid-like and solid-like behaviour. This book will be of interest to researchers, engineers, and graduate students alike, particularly those working in industrial drying, combustion, and chemical production.

Dynamics: Theory and Application of Kane's Method

by Dewey H. Hodges Carlos M. Roithmayr

This book is ideal for teaching students in engineering or physics the skills necessary to analyze motions of complex mechanical systems such as spacecraft, robotic manipulators, and articulated scientific instruments. Kane's method, which emerged recently, reduces the labor needed to derive equations of motion and leads to equations that are simpler and more readily solved by computer, in comparison to earlier, classical approaches. Moreover, the method is highly systematic and thus easy to teach. This book is a revision of Dynamics: Theory and Applications by T. R. Kane and D. A. Levinson and presents the method for forming equations of motion by constructing generalized active forces and generalized inertia forces. Important additional topics include approaches for dealing with finite rotation, an updated treatment of constraint forces and constraint torques, an extension of Kane's method to deal with a broader class of nonholonomic constraint equations, and other recent advances.

Dynamics and Characterization of Composite Quantum Systems

by Manuel Gessner

This thesis sheds new light on the fascinating properties of composite quantum systems. Quantum systems of different sizes, ranging from small bipartite systems to large many-body ensembles, can be studied with the help of modern quantum optical experiments. These experiments make it possible to observe a broad variety of striking features, including nonclassical correlations, complex dynamics and quantum phase transitions. By adopting the complementary perspectives of quantum information theory, quantum chemistry and many-body theory, the thesis develops new methods for the efficient characterization and description of interacting, composite quantum systems.

Dynamics and Control of Advanced Structures and Machines

by Hans Irschik Alexander Belyaev Michael Krommer

The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

Dynamics and Control of Advanced Structures and Machines: Contributions from the 3rd International Workshop, Perm, Russia (CISM International Centre for Mechanical Sciences #444)

by Valerii P. Matveenko Michael Krommer Alexander K. Belyaev Hans Irschik

The volume includes 30 contributions from the 3rd International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines representing the frontiers in the mechanics of controlled machines and structures. The Workshop, held in Perm, Russia in September 2017 continued a series of international workshops, starting in with the Japan - Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures, the Russia - Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines and the first two editions of the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The previous workshops took place in Linz, Austria in September 2008 and April 2010, in St. Petersburg, Russia in July 2012 and in Vienna, Austria in September 2015. The up-to-date contributions are authored by internationally re-known leading experts in dynamics and control representing a broad spectrum of topics in the field of Advanced Structures and Machines; both, with respect to theoretical aspects as well as applications to contemporary engineering problems.

Dynamics and Control of Lorentz-Augmented Spacecraft Relative Motion

by Ye Yan Xu Huang Yueneng Yang

This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

Dynamics and Control of Mechanical Systems in Offshore Engineering

by Wei He Shuzhi Sam Ge Bernard Voon Ee How Yoo Sang Choo

Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: · a complete framework of dynamical analysis and control design for marine mechanical systems; · new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; · a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and · approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. Dynamics and Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.

Dynamics and Control of Trajectory Tubes

by Alexander B. Kurzhanski Pravin Varaiya

This monograph presents theoretical methods involving the Hamilton-Jacobi-Bellman formalism in conjunction with set-valued techniques of nonlinear analysis to solve significant problems in dynamics and control. The emphasis is on issues of reachability, feedback control synthesis under complex state constraints, hard or double bounds on controls, and performance in finite time. Guaranteed state estimation, output feedback control, and hybrid dynamics are also discussed. Although the focus is on systems with linear structure, the authors indicate how to apply each approach to nonlinear and nonconvex systems. The main theoretical results lead to computational schemes based on extensions of ellipsoidal calculus that provide complete solutions to the problems. These computational schemes in turn yield software tools that can be applied effectively to high-dimensional systems. Ellipsoidal Techniques for Problems of Dynamics and Control: Theory and Computation will interest graduate and senior undergraduate students, as well as researchers and practitioners interested in control theory, its applications, and its computational realizations.

Dynamics and Defects in Liquid Crystals: A Festschrift in Honor of Alfred Saupe

by Patricia E. Cladis

During his distinguished scientific career, Alfred Saupe made important contributions to liquid crystal research, laying the groundwork on which much of the current knowledge and research in the physics of liquid crystals is based. This volume features papers presented by Prof. Saupe's colleagues, students and friends at a festschrift in honor of his 70th birthday. In addition, a selection of Prof. Saupe's articles are reprinted in the original German and in English translation, offering the reader a unique opportunity to see both the early work of this important scientist and widespread effect of that work on later discoveries in liquid crystal physics.

Dynamics and Design of Space Nets for Orbital Capture

by Leping Yang Qingbin Zhang Ming Zhen Haitao Liu

This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.

Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers (Nonlinear Systems and Complexity #34)

by Jiazhong Zhang

This contributed volume presents recent developments in nonlinear dynamics applied to engineering. Specifically, the authors address stability and bifurcation in large-scale, complex rotor dynamic systems; periodic motions and their bifurcations in nonlinear circuit systems, fault diagnosis of complex engineering systems with nonlinear approaches, singularities in fluid-machinery and bifurcation analysis, nonlinear behaviors in rotor dynamic system with multi-mistuned blades, mode localization induced by mistuning in impellers with periodical and cyclic symmetry, and nonlinear behaviors in fluid-structure interaction and their control. These new results will maximize reader understand on the recent progress in nonlinear dynamics applied to large-scale, engineering systems in general and nonlinear rotors and impellers in particular.

Dynamics and Kinetics in Structural Biology: Unravelling Function Through Time-Resolved Structural Analysis

by Keith Moffat Eaton E. Lattman

Dynamics and Kinetics in Structural Biology Understand the latest experimental tools in structural biology with this pioneering work Structural biology seeks to understand the chemical mechanisms and functions of biological molecules, such as proteins, based on their atomic structures. Until recently, these structures have been studied only statically, using procedures which deliberately freeze atomic motion. However, freezing eliminates the rapid structural motions so essential to biological activity and function; the molecules are inactive. But with the recent development of X-ray free electron laser (XFEL) sources, efforts to conduct dynamic experiments have expanded using the principles of dynamics and kinetics to capture active biological molecules as they function. Dynamics and Kinetics in Structural Biology promotes the development of these experiments and their successful application. It grounds readers in the foundational principles of dynamics and kinetics; proceeds through extended discussions of experimental procedures and data analysis techniques; and explores experimental frontiers in structural dynamics. The book will aid researchers to gather and interpret cutting-edge data on the dynamic structure of biological molecules, under conditions where they retain their biological functions. Dynamics and Kinetics in Structural Biology offers readers: Authorship by founding figures in the field In-depth presentation of time-resolved X-ray crystallography, solution scattering, and more A pioneering contribution to a rapidly developing field of study Dynamics and Kinetics in Structural Biology is essential reading for graduate students, scientists, researchers and industry professionals engaged in structural studies of biological systems. Industry professionals considering dynamic studies in the development of new product lines will also benefit.

Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition

by Yogambigai Velmurugu

Using a novel approach that combines high temporal resolution of the laser T-jump technique with unique sets of fluorescent probes, this study unveils previously unresolved DNA dynamics during search and recognition by an architectural DNA bending protein and two DNA damage recognition proteins. Many cellular processes involve special proteins that bind to specific DNA sites with high affinity. How these proteins recognize their sites while rapidly searching amidst ~3 billion nonspecific sites in genomic DNA remains an outstanding puzzle. Structural studies show that proteins severely deform DNA at specific sites and indicate that DNA deformability is a key factor in site-specific recognition. However, the dynamics of DNA deformations have been difficult to capture, thus obscuring our understanding of recognition mechanisms. The experiments presented in this thesis uncover, for the first time, rapid (~100-500 microseconds) DNA unwinding/bending attributed to nonspecific interrogation, prior to slower (~5-50 milliseconds) DNA kinking/bending/nucleotide-flipping during recognition. These results help illuminate how a searching protein interrogates DNA deformability and eventually "stumbles" upon its target site. Submillisecond interrogation may promote preferential stalling of the rapidly scanning protein at cognate sites, thus enabling site-recognition. Such multi-step search-interrogation-recognition processes through dynamic conformational changes may well be common to the recognition mechanisms for diverse DNA-binding proteins.

The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment: A Glimpse to Adaptive Thermal Comfort in Buildings (Springer Theses)

by Maohui Luo

This book focuses on human adaptive thermal comfort in the building environment and the balance between reducing building air conditioning energy and improving occupants’ thermal comfort. It examines the mechanism of human thermal adaptation using a newly developed adaptive heat balance model, and presents pioneering findings based on an on online survey, real building investigation, climate chamber experiments, and theoretical models. The book investigates three critical issues related to human thermal adaptation: (i) the dynamics of human thermal adaptation in the building environment; (ii) the basic rules and effects of human physiological acclimatization and psychological adaptation; and (iii) a new, adaptive, heat balance model describing behavioral adjustment, physiological acclimatization, psychological adaptation, and physical improvement effects. Providing the basis for establishing a more reasonable adaptive thermal comfort model, the book is a valuable reference resource for anyone interested in future building thermal environment evaluation criteria.

Dynamics and Nonlinear Control of Integrated Process Systems

by Michael Baldea Prodromos Daoutidis

Presenting a systematic model reduction and hierarchical controller design framework for broad classes of integrated process systems encountered in practice, this book first studies process systems with large material recycle and/or with small purge streams, followed by systems with energy integration. Step-by-step model reduction procedures are developed to derive nonlinear reduced models of the dynamics in each time scale. Hierarchical control architectures consisting of coordinated levels of control action in different time scales are proposed for each class of process systems considered to enforce stability, tracking performance and disturbance rejection. Numerous process applications are discussed in detail to illustrate the application of the methods and their potential to improve process operations. MATLAB codes are also presented to guide further application of the methods developed and facilitate practical implementations.

Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events (Special Publications of the International Union of Geodesy and Geophysics)

by Jianping Li Richard Swinbank Richard Grotjahn Hans Volkert

Based largely on an International Commission on Dynamical Meteorology (ICDM) workshop, this timely volume, written by leading researchers in the field, covers a range of important research issues related to high-impact weather and extreme climate events. Dynamical linkages between these extremes and various atmospheric and ocean phenomena are examined, including Atlantic Multidecadal, North Atlantic, and Madden–Julian Oscillations; Annular Modes; tropical cyclones; and Asian monsoons. This book also examines the predictability of high-impact weather and extreme climate events on multiple time scales. Highlighting recent research and new advances in the field, this book enhances understanding of dynamical and physical processes associated with these events to help managers and policy makers make informed decisions to manage risk and prevent or mitigate disasters. It also provides guidance on future research directions in atmospheric science, meteorology, climate science, and weather forecasting, for experts and young scientists. Emphasises the predictability of extreme events, providing useful background information to help policymakers and managers plan for climate extremes and shorter-term forecasts of severe weather events. Provides a context for future research in the field of high-impact weather and climate extremes by compiling a wide variety of diagnostic and dynamical tools. Presents a less technical explanation of the dynamical processes involved in extreme weather events, making it accessible to a wider audience.

Dynamics and Transport in Macromolecular Networks: Theory, Modelling, and Experiments

by Li-Tang Yan

Dynamics and Transport in Macromolecular Networks Comprehensive knowledge on concepts and experimental advancement, as well as state-of-the-art computational tools and techniques for simulation and theory Dynamics and Transport in Macromolecular Networks: Theory, Modeling, and Experiments provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that exhibit various dynamic patterns and even anomalous behaviors of dynamics, investigating concepts and experimental advancement, as well as state-of-the-art computational tools and techniques for the simulation of macromolecular networks and the transport behavior in them. The detailed text begins with discussions on the structural organization of various macromolecular networks, then moves on to review and consolidate the latest research advances and state-of-the-art tools and techniques for the experimental and theoretical studies of the transport in macromolecular networks. In so doing, the text extracts and emphasizes common principles and research advancement from many different disciplines while providing up-to-date coverage of this new field of research. Written by highly experienced and internationally renowned specialists in various disciplines, such as polymer, soft matter, chemistry, biophysics, and more, Dynamics and Transport in Macromolecular Networks covers sample topics such as: Modeling (visco)elasticity macromolecular and biomacromolecular networks, covering statistical and elastic models and permanent biomacromolecular networks Focus on controlled degradation in modeling reactive hydrogels, covering mesoscale modeling of reactive polymer networks and modeling crosslinking due to hydrosilylation reaction Dynamic bonds in associating polymer networks, covering segmental and chain dynamics and phase-separated aggregate dynamics Direct observation of polymer reptation in entangled solutions and junction fluctuations in crosslinked networks, covering tube width fluctuations and dynamic fluctuations of crosslinks A much-needed overview of developments and scientific findings in the transport behaviors in macromolecular networks, Dynamics and Transport in Macromolecular Networks is a highly valuable resource for chemists, physicists, and other scientists and engineers working in fields related to macromolecular network systems, both theoretically and experimentally.

Dynamics and Vibrations: Progress in Nonlinear Analysis

by Davood Domairry Ganji Seyed Habibollah Kachapi

Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between theory and practice, fundamentals and advanced subjects, and generality and specialization. None of the books in this area have completely studied and analyzed nonlinear equation in dynamical and vibratory systems using the latest analytical and numerical methods, so that the user can solve the problems without the need of studying too many different references. Thereby in this book, by the use of the latest analytic, numeric laboratorial methods and using more than 300 references like books, papers and the researches done by the authors and by considering almost all possible processes and situation, new theories has been proposed to encounter applied problems in engineering and applied sciences. In this way, the user (bachelor's, master's and PhD students, university teachers and even in research centers in different fields of mechanical, civil, aerospace, electrical, chemical, applied mathematics, physics, and etc.) can encounter such systems confidently. In the different chapters of the book, not only are the linear and especially nonlinear problems with oscillatory form broadly discussed, but also applied examples are practically solved by the proposed methodology.

Dynamics at Solid State Surfaces and Interfaces: Volume 1 - Current Developments

by Uwe Bovensiepen Hrvoje Petek Martin Wolf

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

Dynamics at Solid State Surfaces and Interfaces: Current Developments

by Martin Wolf Hrvoje Petek Uwe Bovensiepen

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

Dynamics at Solid State Surfaces and Interfaces

by Martin Wolf Hrvoje Petek Uwe Bovensiepen

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques.The whole is rounded off by a look at future developments.

Dynamics in Engineering Practice (Applied and Computational Mechanics)

by Dara W. Childs Andrew P. Conkey

Observing that most books on engineering dynamics left students lacking and failing to grasp the general nature of dynamics in engineering practice, the authors of Dynamics in Engineering Practice, Eleventh Edition focused their efforts on remedying the problem. This text shows readers how to develop and analyze models to predict motion. While esta

Dynamics in Enzyme Catalysis

by Judith Klinman Sharon Hammes-Schiffer

Christopher M. Cheatum and Amnon Kohen, Relationship of Femtosecond-Picosecond Dynamics to Enzyme-Catalyzed H-Transfer. Cindy Schulenburg and Donald Hilvert, Protein Conformational Disorder and Enzyme Catalysis. A. Joshua Wand, Veronica R. Moorman and Kyle W. Harpole, A Surprising Role for Conformational Entropy in Protein Function. Travis P. Schrank, James O. Wrabl and Vincent J. Hilser, Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations. Buyong Ma and Ruth Nussinov, Structured Crowding and Its Effects on Enzyme Catalysis. Michael D. Daily, Haibo Yu, George N. Phillips Jr and Qiang Cui, Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. Karunesh Arora and Charles L. Brooks III, Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase. Steven D. Schwartz, Protein Dynamics and the Enzymatic Reaction Coordinate.

Refine Search

Showing 19,901 through 19,925 of 77,178 results