Browse Results

Showing 21,101 through 21,125 of 84,624 results

Dynamics of Quasi-Stable Dissipative Systems

by Igor Chueshov

This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level. Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.

Dynamics of Regenerative Heat Transfer

by John A Willmott

The author, a respected authority on heat recovery, provides up-to-date and comprehensive coverage of the modelling of the process of heat transfer embodied in regenerative devices. He brings together material on storage and thermal generators and gives great emphasis to non-linear problems including the representation of temperature dependence of thermophysical properties involved.; In ten dynamic chapters, you will find coverage of: the storage of heat in packing; the Single Blow problem; basic concepts in counterflow thermal regenerators; counterflow regenerators; finite conductivity models; non-linear models of counterflow regenerators; transient response of counterflow regenerators; and parallel flow regenerators. Bringing together material developed over the past twenty years, the book will be of great interest to mechanical and chemical engineers as well as applied mathematicians concerned with models of heat transfer processes.

Dynamics of Soft Matter: Neutron Applications (Neutron Scattering Applications and Techniques)

by Christiane Alba-Simionesco Sow Hsin Chen Victoria Garcia Sakai

Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or microfluidics. Emphasizing the complementarities of scattering techniques with other spectroscopic ones, this volume also highlights the potential gain in combining techniques such as rheology, NMR, light scattering, dielectric spectroscopy, as well as synchrotron radiation experiments. Key areas covered include polymer science, biological materials, complex fluids and surface science.

Dynamics of Structures: Oscillations/Vibrations

by Levon Gregory Petrosian

This book presents dynamic calculation in the context of structural mechanics and civil engineering. It explains the process of testing the strength of structures and determining the dynamic displacements, velocities, and accelerations, whose values; as measured by the influence of vibrations on people, and certain types of precision equipment, such as measuring instruments, high-precision machines, and equipment for microelectronics production, should not exceed the permissible limits. The first part of the book (15 chapters) is ideal as a textbook for advanced undergraduate, graduate, or post-graduate students taking their first course in structural dynamics. This text can be used for two semesters. In addition, the book will serve as a primary reference for practicing engineers and research workers, as well as a self-study guide for students, researchers, and professional engineers. The second part of the book (chapter 16 onwards) is intended mainly for professionals and specialists in the field of dynamics of structures and related areas.

Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles and Lyotropic Phases

by Raoul Zana

Dynamics of Surfactant Self-Assemblies explains the dynamics of micellar equilibria, tracking surfactant exchange, and micelle formation/breakdown processes. Highlighting the structural similarities of amphiphilic block copolymers to surfactants, this volume elucidates the dynamics of more complex self-assemblies that surfactants and amphiphilic bl

Dynamics of Systems on the Nanoscale (Lecture Notes in Nanoscale Science and Technology #34)

by Andrey V. Solov’yov Ilia A. Solov’yov Alexey V. Verkhovtsev Andrei V. Korol

This book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.

Dynamics of Underactuated Multibody Systems

by Robert Seifried

Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.

Dynamics of Visual Motion Processing

by Guillaume S. Masson Uwe J. Ilg

Motion processing is an essential piece of the complex brain machinery that allows us to reconstruct the 3D layout of objects in the environment, to break camouflage, to perform scene segmentation, to estimate the ego movement, and to control our action. Although motion perception and its neural basis have been a topic of intensive research and modeling the last two decades, recent experimental evidences have stressed the dynamical aspects of motion integration and segmentation. This book presents the most recent approaches that have changed our view of biological motion processing. These new experimental evidences call for new models emphasizing the collective dynamics of large population of neurons rather than the properties of separate individual filters. Chapters will stress how the dynamics of motion processing can be used as a general approach to understand the brain dynamics itself.

Dynamics of Vortex Structures in a Stratified Rotating Fluid

by Jacques Verron Mikhail A. Sokolovskiy

This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean. It widely covers the case of hetonic situations as well as the case of intrathermocline vortices that are familiar in oceanographic and of recognized importance for heat and mass transfers. Extensive typology of such baroclinic eddies is made and analysed with the help of theoretical development and numerical computations. As a whole it gives an overview and synthesis of all the many situations that can be encountered based on the long history of the theory of vortex motion and on many new situations. It gives a renewed insight on the extraordinary richness of vortex dynamics and open the way for new theoretical, observational and experimental advances. This volume is of interest to experts in physical oceanography, meteorology, hydrodynamics, dynamic systems, involved in theoretical, experimental and applied research and lecturers, post-graduate students, and students in these fields.

Dynamics of Young Star Clusters and Associations

by Cathie Clarke Robert D. Mathieu Iain Neill ReidMichael R. Meyer Laurent Eyer Cameron P.M. Bell

Where do most stars (and the planetary systems that surround them) in the Milky Way form? What determines whether a young star cluster remains bound (such as an open or globular cluster), or disperses to join the field stars in the disc of the Galaxy? These questions not only impact understanding of the origins of stars and planetary systems like our own (and the potential for life to emerge that they represent), but also galaxy formation and evolution, and ultimately the story of star formation over cosmic time in the Universe. This volume will help readers understand our current views concerning the answers to these questions as well as frame new questions that will be answered by the European Space Agency's Gaia satellite that was launched in late 2013. The book contains the elaborated notes of lectures given at the 42nd Saas-Fee Advanced Course "Dynamics of Young Star Clusters & Associations" by Cathie Clarke (University of Cambridge) who presents the theory of star formation and dynamical evolution of stellar systems, Robert Mathieu (University of Wisconsin) who discusses the kinematics of star clusters and associations, and I. Neill Reid (S pace Telescope Science Institute) who provides an overview of the stellar populations in the Milky Way and speculates on from whence came the Sun. As part of the Saas-Fee Advanced Course Series, the book offers an in-depth introduction to the field serving as a starting point for Ph. D. research and as a reference work for professional astrophysicists.

Dynamics of a Quantum Spin Liquid

by Johannes Knolle

This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures--qualitative and quantitative--of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.

Dynamics of the Axially Moving Orthotropic Web

by Krzysztof Marynowski

A material continuum moving axially at high speed can be met in numerous different technical applications. These comprise band saws, web papers during manufacturing, processing and printing processes, textile bands during manufacturing and processing, pipes transporting fluids, transmission belts as well as flat objects moving at high speeds in space. In all these so varied technical applications, the maximum transport speed or the transportation speed is aimed at in order to increase efficiency and optimize investment and performance costs of sometimes very expensive and complex machines and installations. The dynamic behavior of axially moving systems very often hinders from reaching these aims. The book is devoted to dynamics of axially moving material objects of low flexural stiffness that are referred to as webs. Webs are moving at high speed, for example, in paper production the paper webs are transported with longitudinal speeds of up to 3000 m/min. Above the critical speed one can expect various dynamical instabilities mainly of divergent and flutter type. The up-to-date state of investigations conducted in the field of the axially moving system dynamics is presented in the beginning of the book. Special attention is paid on nonlinear dynamic investigations of translating systems. In the next chapters various mathematical models that can be employed in dynamic investigations of such objects and the results of analysis of the dynamic behavior of the axially moving orthotropic material web are presented. To make tracing the dynamic considerations easier, a paper web is the main object of investigations in the book.

Dynamics of the Chemostat: A Bifurcation Theory Approach

by Abdelhamid Ajbar Khalid Alhumaizi

A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors' extensive work in this

Dynamics of the Earth System: Contributions from Scientific Ocean Drilling (Society of Earth Scientists Series)

by Dhananjai K. Pandey M. Ravichandran Nisha Nair

This book highlights Indian scientific endeavours and contributions to answering the vast multitude of questions posed by our changing environment. The International Ocean Discovery Program (IODP) explores Earth’s history and dynamics using deep ocean drilling platforms to recover the data locked inside seafloor sediments and rocks. Since 2009, Indian scientists have been actively engaged in these expeditions. Scientists from various Earth Science disciplines have seized this opportunity to offer their expertise in order to help unravel the mysteries of the past – by delving deep into the valuable sedimentary records of our oceans. This book presents a compilation of some of their most important findings to motivate and encourage young minds for their enhanced role in the cutting edge science of ocean drilling.

Dynamics of the Milky Way

by Jason Sanders

This work presents a study of methods useful for modeling and understanding dynamical systems in the Galaxy. A natural coordinate system for the study of dynamical systems is the angle-action coordinate system. New methods for the approximation of the action-angle variables in general potentials are presented and discussed. These new tools are applied to the construction of dynamical models for two of the Galaxy's components: tidal streams and the Galactic disc. Tidal streams are remnants of tidally stripped satellites in the Milky Way that experience the effects of the large scale structure of the Galactic gravitational potential, while the Galactic disc provides insights into the nature of the Galaxy near the Sun. Appropriate action-based models are presented and discussed for these components, and extended to include further information such as the metallicity of stars.

Dynamics of the Standard Model

by John F. Donoghue Eugene Golowich Barry R. Holstein

This book gives a detailed account of the Standard Model of particle physics, focussing on the techniques by which the model can produce information about real observed phenomena. It opens with a pedagogic account of the theory of the Standard Model. Introductions to the essential calculational techniques are included. The major part of the text is concerned with the use of the Standard Model in the calculation of physical properties of particles. Rigorous and reliable methods (radiative corrections and nonperturbative techniques based on symmetries and anomalies) are emphasized, but other useful models (such as the quark and Skyrme models) are also described. The strong and electroweak interactions are not treated as independent threads but rather are woven together into a unified phenomenological fabric. Many exercises and diagrams are included.

Dynamics of the Sun and Stars: Honoring the Life and Work of Michael J. Thompson (Astrophysics and Space Science Proceedings #57)

by Rafael A. García Mário J. P. F. G. Monteiro Jørgen Christensen-Dalsgaard Scott W. McIntosh

These are the proceedings of a meeting celebrating Michael Thompson's seminal work on solar and stellar physics, as well as his major contributions to the development of the National Center for Atmospheric Research. The meeting also marked Michael J. Thompson’s untimely death in October 2018. Michael played a key role in the development of helioseismology and its application to the study of the structure and dynamics of the solar interior, and he provided a strong foundation for the extension of seismic studies for other stars. After focusing for several years on more administrative activities, he was returning to leading the seismic studies of solar interior rotation and he was deeply involved in the understanding of the dynamics of the core of stars, when his life was tragically lost. The conference focused on dynamical aspects of the sun and stars, based on the large amount of data available on solar and stellar oscillations, and the extensive and detailed modelling now becoming feasible. Combining observations, seismic analysis, and modelling the meeting and this book serve as a fitting memorial to a close colleague and friend, much missed.

Dynamics of the Unicycle: Modelling And Experimental Verification (SpringerBriefs in Applied Sciences and Technology)

by Tomasz Kapitaniak Michał Niełaczny Barnat Wiesław

This book presents a three-dimensional model of the complete unicycle–unicyclist system. A unicycle with a unicyclist on it represents a very complex system. It combines Mechanics, Biomechanics and Control Theory into the system, and is impressive in both its simplicity and improbability. Even more amazing is the fact that most unicyclists don’t know that what they’re doing is, according to science, impossible – just like bumblebees theoretically shouldn’t be able to fly. This book is devoted to the problem of modeling and controlling a 3D dynamical system consisting of a single-wheeled vehicle, namely a unicycle and the cyclist (unicyclist) riding it. The equations of motion are derived with the aid of the rarely used Boltzmann–Hamel Equations in Matrix Form, which are based on quasi-velocities. The Matrix Form allows Hamel coefficients to be automatically generated, and eliminates all the difficulties associated with determining these quantities. The equations of motion are solved by means of Wolfram Mathematica. To more faithfully represent the unicyclist as part of the model, the model is extended according to the main principles of biomechanics. The impact of the pneumatic tire is investigated using the Pacejka Magic Formula model including experimental determination of the stiffness coefficient. The aim of control is to maintain the unicycle–unicyclist system in an unstable equilibrium around a given angular position. The control system, based on LQ Regulator, is applied in Wolfram Mathematica. Lastly, experimental validation, 3D motion capture using software OptiTrack – Motive:Body and high-speed cameras are employed to test the model’s legitimacy. The description of the unicycle–unicyclist system dynamical model, simulation results, and experimental validation are all presented in detail.

Dynamics with Chaos and Fractals (Nonlinear Systems and Complexity #29)

by Marat Akhmet Mehmet Onur Fen Ejaily Milad Alejaily

The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.

Dynamics with Chaos and Fractals (Nonlinear Systems and Complexity #29)

by Marat Akhmet Mehmet Onur Fen Ejaily Milad Alejaily

The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.

Dynamics, Information and Complexity in Quantum Systems (Theoretical and Mathematical Physics)

by Fabio Benatti

This second edition of Dynamics, Information and Complexity in Quantum Systems widens its scope by focussing more on the dynamics of quantum correlations and information in microscopic and mesoscopic systems, and their use for metrological and machine learning purposes. The book is divided into three parts: Part One: Classical Dynamical SystemsAddresses classical dynamical systems, classical dynamical entropy, and classical algorithmic complexity.Includes a survey of the theory of simple perceptrons and their storage capacity. Part Two: Quantum Dynamical SystemsFocuses on the dynamics of entanglement under dissipative dynamics and its metrological use in finite level quantum systems.Discusses the quantum fluctuation approach to large-scale mesoscopic systems and their emergent dynamics in quantum systems with infinitely many degrees of freedom.Introduces a model of quantum perceptron whose storage capacity is computed and compared with the classical one. Part Three: Quantum Dynamical Entropies and ComplexitiesDevoted to quantum dynamical entropies and algorithmic complexities. This book is meant for advanced students, young and senior researchers working in the fields of quantum statistical mechanics, quantum information, and quantum dynamical systems. It is self-contained, and the only prerequisites needed are a standard knowledge of statistical mechanics, quantum mechanics, and linear operators on Hilbert spaces.

Dynamics, Silviculture and Management of Mixed Forests (Managing Forest Ecosystems #31)

by Hans Pretzsch Andrés Bravo-Oviedo Miren Del Río

The capacity of mixed forests to mitigate climate change effects by increasing resilience and lowering risks is pinpointed as an opportunity to highlight the role of tree species rich forests as part of complex socio-ecological systems. This book updates and presents the state-of-the-art of mixed forest performance in terms of regeneration, growth, yield and delivery of ecosystem services. Examples from more than 20 countries in Europe, North Africa and South America provide insights on the interplay between structure and functionining, stability, silviculture and optimization of management of this type of forests. The book also analyses the role of natural mixed forests and mixed plantations in the delivery of ecosystem services and the best modelling strategy to study mixed forest dynamics. The book is intended to serve as a reference tool for students, researchers and professionals concerned about the management of mixed forests in a context of social and environmental change.

Dynamics, Strength of Materials and Durability in Multiscale Mechanics (Advanced Structured Materials #137)

by Francesco Dell’Isola Leonid Igumnov

This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials

Dynamics: A Lecturebook

by Charles M. Krousgrill Jeffrey F. Rhoads

This hybrid of textbook and lecture notes set is designed to provide an undergraduate-level, engineering-focused introduction to the topic of dynamics. To this end, the text covers the following key topical areas: Particle and Rigid Body Kinematics, including Cartesian, path, polar, and cylindrical descriptions of motion; relative and constrained motion; vector kinematics; instantaneous centers of rotation; and 2D and 3D moving reference frames. Particle and Rigid Body Kinetics, including Newtons Laws of Motion; the work-energy equation; and the linear and angular impulse-momentum equations. Introduction to Mechanical Vibrations, including equation of motion development; free vibration response; harmonic forced vibrations; base excitation; and rotating imbalance, all as applied to single-degree-of-freedom systems. The text provides pertinent background information, while emphasizing fundamental engineering principles, conceptual understanding, and optimal problem solving techniques. The Lecturebook also incorporates an extensive array of practical examples with which students can hone their skills. Key distinctions between the Lecturebook and most conventional texts include: Complete integration of factual information and student-produced notes. Removal of extraneous factual information. The inclusion of conceptual problems designed to exercise higher levels of learning. Lecture example, homework solution, and demonstration videos designed to aid asynchronous learning. The hybrid textbook/lecture note format provides most factual information in full, while brief and extended examples are provided with ample white space, allowing students to actively work the problems with the instructor s assistance in a classroom environment, or outside of the classroom on their own or with the assistance of online videos.

Dynamics: Theory and Application of Kane's Method

by Dewey H. Hodges Carlos M. Roithmayr

This book is ideal for teaching students in engineering or physics the skills necessary to analyze motions of complex mechanical systems such as spacecraft, robotic manipulators, and articulated scientific instruments. Kane's method, which emerged recently, reduces the labor needed to derive equations of motion and leads to equations that are simpler and more readily solved by computer, in comparison to earlier, classical approaches. Moreover, the method is highly systematic and thus easy to teach. This book is a revision of Dynamics: Theory and Applications by T. R. Kane and D. A. Levinson and presents the method for forming equations of motion by constructing generalized active forces and generalized inertia forces. Important additional topics include approaches for dealing with finite rotation, an updated treatment of constraint forces and constraint torques, an extension of Kane's method to deal with a broader class of nonholonomic constraint equations, and other recent advances.

Refine Search

Showing 21,101 through 21,125 of 84,624 results