Browse Results

Showing 21,176 through 21,200 of 82,321 results

Dynamic Failure of Composite and Sandwich Structures

by Bruno Castanié Serge Abrate Yapa D. Rajapakse

This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of impact on laminated composite structures with chapters devoted to ballistic impacts on pre-stressed composite structures, tests developed to simulate dynamic failure in marine structures, damage mechanisms and energy absorption in low velocity impacts, perforation, the numerical simulation of intra and inter-ply damage during impact, and hail impact on laminated composites. Sandwich structures with laminated facings are considered in Section 3 with chapters dealing with the discrete modeling of honeycomb core during the indentation of sandwich structures, the behavior of fold core sandwich structures during impact, and impact on helicopter blades. The fourth section consists of two chapters presenting experimental results and numerical simulation of composite structures subjected to crash. This volume is intended for advanced undergraduate and graduate students, researchers, and engineers interested and involved in analysis and design of composite structures.

Dynamic Failure of Materials and Structures

by Arun Shukla Yapa D.S. Rajapakse Guruswami Ravichandran

Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.

Dynamic Fields and Waves

by A. Norton

This book explores the use of waves on strings and sound waves to illustrate the behaviour of waves. It shows how Albert Einstein overturned Newtonian physics and predicted startling new effects such as time dilation and length contraction for objects travelling at close to the speed of light.

Dynamic Flowsheet Simulation of Solids Processes

by Stefan Heinrich

This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.

Dynamic Force Spectroscopy and Biomolecular Recognition

by Anna Rita Bizzarri Salvatore Cannistraro

Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies a

Dynamic Formal Epistemology

by Olivier Roy Patrick Girard Mathieu Marion

This volume is a collation of original contributions from the key actors of a new trend in the contemporary theory of knowledge and belief, that we call "dynamic epistemology". It brings the works of these researchers under a single umbrella by highlighting the coherence of their current themes, and by establishing connections between topics that, up until now, have been investigated independently. It also illustrates how the new analytical toolbox unveils questions about the theory of knowledge, belief, preference, action, and rationality, in a number of central axes in dynamic epistemology: temporal, social, probabilistic and even deontic dynamics.

Dynamic Hyperpolarized Nuclear Magnetic Resonance (Handbook of Modern Biophysics)

by Thomas Jue Dirk Mayer

This is the first book in the series to focus on dynamic hyperpolarized nuclear magnetic resonance, a burgeoning topic in biophysics. The volume follows the format and style of the Handbook of Modern Biophysics series and expands on topics already discussed in previous volumes. It builds a theoretical and experimental framework for students and researchers who wish to investigate the biophysics and biomedical application of dynamic hyperpolarized NMR. All contributors are internationally recognized experts, lead the dynamic hyperpolarized NMR field, and have first-hand knowledge of the chapter material. The book covers the following topics: Hyperpolarization by dissolution Dynamic Nuclear Polarization Design considerations for implementing a hyperpolarizer Chemical Shift Imaging with Dynamic Hyperpolarized NMR Signal Sampling Strategies in Dynamic Hyperpolarized NMRKinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR DataUsing Hyperpolarized NMR to Understand Biochemistry from Cells to Humans Innovating Metabolic Biomarkers for Hyperpolarized NMR New Insights into Metabolic Regulation from Hyperpolarized 13C MRS/MRI Studies Novel Views on Heart Function from Dynamic Hyperpolarized NMR Insights on Lactate Metabolism in Skeletal Muscle based on 13C Dynamic Nuclear Polarization Studies About the Editors Dirk Mayer is Professor of Diagnostic Radiology and Nuclear Medicine at the University of Maryland and is the Director of Metabolic Imaging. He is a recognized expert on dynamic nuclear polarization (DNP) MRI-based imaging techniques and has optimized acquisition and reconstruction techniques, has constructed kinetic modeling for quantitative analysis, and has developing new probes. Thomas Jue is Professor of Biochemistry and Molecular Medicine at the University of California Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to redesign a graduate curriculum that balances physical science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. The Handbook of Modern Biophysics represents an aspect of that effort.

Dynamic Image Analysis of Granular Materials: Particle Granulometry for Geotechnical, Material, and Geological Applications (Springer Series in Geomechanics and Geoengineering)

by Magued Iskander Linzhu Li

This book explores the effectiveness of Dynamic Image Analysis (DIA) in granulometry studies of sand, and presents criteria for soil characterization using DIA, including test parameters, specimen size, efficacy in gap-graded soils, and its limitations. DIA is a modern experimental technique used to analyze and classify particulate materials based on their size, shape, and other morphological properties. This method employs a high-frame-rate camera to capture images of individual sand particles, which have been transported and separated using various techniques. DIA generates both particle size and shape information by analyzing thousands to millions of particles, providing a quantitative statistical description of grain size and shape distribution within the specimen. The manuscript also offers a comprehensive examination of 2D and 3D particle size and shape descriptors. It demonstrates that there is no correlation between size and shape parameters in many sands and that shape descriptors can be reduced to four independent parameters representing sand granulometry at different scales. Additionally, the use of DIA in exploring the depositional history of two complex calcareous sands is presented. The manuscript presents the properties of 30 representative sands, including size and shape parameters, and fits them to statistical distributions. The investigated soils encompass both natural and machine-sorted materials, particles with regular and irregular shapes, as well as siliceous and calcareous sands. Physical granulometry of sand particles is compared using 2D, 3D DIA, and micro-computed tomography (μCT). The work demonstrates that DIA offers significant advantages in terms of efficiency for 3D shape analysis while providing an adequate representation of particle sizes and shapes of most sands. Finally, the manuscript integrates classical geotechnical engineering with computer vision and artificial intelligence. Size and shape descriptors are utilized for sand classification through machine learning models. This work represents a crucial step toward the automatic machine classification of soils, potentially enabling on-site classification using smartphones equipped with high-resolution cameras.

Dynamic Isolation Technologies in Negative Pressure Isolation Wards

by Zhonglin Xu Bin Zhou

This book presents novel design principles and technologies for dynamic isolation based on experimental studies. These approaches have now become the local standard in Beijing and are currently being promoted for use nationwide. Further, the book provides details of measures and guidelines for the design process. Departing from the traditional understanding that isolation wards should be designed with high negative pressure, airtight doors and fresh air, it establishes the basis for designing biological clean rooms, including isolation wards, using a simple and convenient scientific approach. This book is intended for designers, engineers, researchers, hospital management staff and graduate students in heating ventilation air conditioning (HVAC), air cleaning technologies and related areas.

Dynamic Laser Speckle and Applications (Optical Science and Engineering)

by Hector J. Rabal and Roberto A. Braga

Speckle study constitutes a multidisciplinary area with inherent complexities. In order to conquer challenges such as the variability of samples and sensitive measurements, researchers must develop a theoretical and statistical understanding of both biological and non-biological metrology using dynamic speckle laser.Dynamic Laser Speckle and Applications discusses the main methodologies used to analyze biospeckle phenomena with a strong focus on experimentation. After establishing a theoretical background in both speckle and biospeckle, the book presents the main methodologies for statistical and image analysis. It then deals with the concept of frequency decomposition before moving on to a discussion of fuzzy methods to treat dynamic speckle data. The book dedicates two sections to applications, including agricultural approaches. Additional features include photo images of experiments and software to aid in easy start-up of dynamic speckle usage.A systematic approach to new dynamic speckle laser phenomena, this book provides the physical theory and statistical background needed to analyze images formed by laser illumination in biological and non-biological samples.

Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Books on Physics)

by Robert Pecora Bruce J. Berne

Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation functions, with chapters on projection operator techniques in statistical mechanics. The first half comprises most of the material necessary for an elementary understanding of the applications to the study of macromolecules, or comparable sized particles in fluids, and to the motility of microorganisms. The study of collective (or many particle) effects constitutes the second half, including more sophisticated treatments of macromolecules in solution and most of the applications of light scattering to the study of fluids containing small molecules.With its wide-ranging discussions of the many applications of light scattering, this text will be of interest to research chemists, physicists, biologists, medical and fluid mechanics researchers, engineers, and graduate students in these areas.

Dynamic Light Scattering Imaging: Foundations of Non-Invasive Blood Flow Imaging

by Anton Sdobnov Evgenii Zherebtsov Alexander Bykov Igor Meglinski

This book examines Dynamic Light Scattering (DLS) and its derivatives Laser Doppler Flowmetry (LDF), Diffusing Wave Spectroscopy (DWS), Laser Speckle Contrast Imaging (LSCI), and Doppler Optical Coherence Tomography (OCT) for characterizing particle motion in turbid mediums like suspensions and solutions. It focuses on non-invasive blood flow imaging in biological tissues, detailing technological advancements, practical applications, and inherent challenges. Essential for professionals in biomedical optics and medical fields, as well as physics and engineering students, the book highlights its use in brain, skin, and micro-circulation studies, providing key insights and practical guidance.Key Features:• Presents a deep dive into DLS and its derivative techniques.• Emphasizes practical applications, including brain blood flow monitoring, skin perfusion measurements, and micro-circulation characterization.• Delivers insights into the challenges and limitations associated with DLS-based blood flow imaging.

The Dynamic Magnetosphere

by Masaki Fujimoto William Liu

Despite the plethora of monographs published in recent years, few cover recent progress in magnetospheric physics in broad areas of research. While a topical focus is important to in-depth views at a problem, a broad overview of our field is also needed. The volume answers to the latter need. With the collection of articles written by leading scientists, the contributions contained in the book describe latest research results in solar wind-magnetosphere interaction, magnetospheric substorms, magnetosphere-ionosphere coupling, transport phenomena in the plasma sheet, wave and particle dynamics in the ring current and radiation belts, and extra-terrestrial magnetospheric systems. In addition to its breadth and timeliness, the book highlights innovative methods and techniques to study the geospace.

Dynamic Management of Sustainable Development

by Irina Oleinikova Anna Mutule Yuri Merkuryev Zigurds Krishans

Dynamic management of systems development is a precondition for the realization of sustainable system development. This approach allows for the usage of systems theory methods that take into consideration the interaction of decisions made over time and space. A characteristic feature of this kind of method is that the process of sophisticated object development over time is examined for optimal decision selection. This requires the application of modelling methods that represent properties of the developing objects, high speed calculation methods for the estimation of technical and economic characteristics, as well as effective optimization methods. Dynamic Management of Sustainable Development presents a concise summary of the authors' research in the area of dynamic methods analysis of technical systems development. Along with systematic illustration of mathematical methods, considerable attention is drawn to practical realization and applications. Dynamic Management of Sustainable Development will be helpful for scientists involved in the mathematical modelling of large technical systems development and for engineers working in the area of large technical systems planning.

Dynamic Mechanical Analysis: A Practical Introduction

by Kevin P. Menard Noah Menard

Dynamic Mechanical Analysis (DMA) is a powerful technique for understanding the viscoelastic properties of materials. It has become a powerful tool for chemists, polymer and material scientists, and engineers. Despite this, it often remains underutilized in the modern laboratory. Because of its high sensitivity to the presence of the glass transition, many users limit it to detecting glass transitions that can’t be seen by differential scanning calorimetry (DSC). This book presents a practical and straightforward approach to understanding how DMA works and what it measures. Starting with the concepts of stress and strain, the text takes the reader through stress–strain, creep, and thermomechanical analysis. DMA is discussed as both the instrument and fixtures as well as the techniques for measuring both thermoplastic and thermosetting behavior. This edition offers expanded chapters on these areas as well as frequency scanning and other application areas. To help the reader grasp the material, study questions have also been added. Endnotes have been expanded and updated. Features Reflects the latest DMA research and technical advances Includes case studies to demonstrate the use of DMA over a range of industrial problems Includes numerous references to help those with limited materials engineering background Demonstrates the power of DMA as a laboratory tool for analysis and testing

Dynamic Modeling and Active Vibration Control of Structures

by Moon Kyu Kwak

This book describes the active vibration control techniques which have been developed to suppress excessive vibrations of structures. It covers the fundamental principles of active control methods and their applications and shows how active vibration control techniques have replaced traditional passive vibration control. The book includes coverage of dynamic modeling, control design, sensing methodology, actuator mechanism and electronic circuit design, and the implementation of control algorithms via digital controllers. An in-depth approach has been taken to describe the modeling of structures for control design, the development of control algorithms suitable for structural control, and the implementation of control algorithms by means of Simulink block diagrams or C language. Details of currently available actuators and sensors and electronic circuits for signal conditioning and filtering have been provided based on the most recent advances in the field. The book is used as a textbook for students and a reference for researchers who are interested in studying cutting-edge technology. It will be a valuable resource for academic and industrial researchers and professionals involved in the design and manufacture of active vibration controllers for structures in a wide variety of fields and industries including the automotive, rail, aerospace, and civil engineering sectors.

Dynamic Modeling and Predictive Control in Solid Oxide Fuel Cells

by Biao Huang Yutong Qi A. K. Murshed

The high temperature solid oxide fuel cell (SOFC) is identified as one of the leading fuel cell technology contenders to capture the energy market in years to come. However, in order to operate as an efficient energy generating system, the SOFC requires an appropriate control system which in turn requires a detailed modelling of process dynamics.Introducting state-of-the-art dynamic modelling, estimation, and control of SOFC systems, this book presents original modelling methods and brand new results as developed by the authors. With comprehensive coverage and bringing together many aspects of SOFC technology, it considers dynamic modelling through first-principles and data-based approaches, and considers all aspects of control, including modelling, system identification, state estimation, conventional and advanced control.Key features:Discusses both planar and tubular SOFC, and detailed and simplified dynamic modelling for SOFCSystematically describes single model and distributed models from cell level to system levelProvides parameters for all models developed for easy reference and reproducing of the resultsAll theories are illustrated through vivid fuel cell application examples, such as state-of-the-art unscented Kalman filter, model predictive control, and system identification techniques to SOFC systemsThe tutorial approach makes it perfect for learning the fundamentals of chemical engineering, system identification, state estimation and process control. It is suitable for graduate students in chemical, mechanical, power, and electrical engineering, especially those in process control, process systems engineering, control systems, or fuel cells. It will also aid researchers who need a reminder of the basics as well as an overview of current techniques in the dynamic modelling and control of SOFC.

Dynamic Models in Biology

by Stephen P. Ellner John Guckenheimer

From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Dynamic Models of Infectious Diseases

by Vadrevu Sree Rao Ravi Durvasula

Despite great advances in public health worldwide, insect vector-borne infectious diseases remain a leading cause of morbidity and mortality. Diseases that are transmitted by arthropods such as mosquitoes, sand flies, fleas, and ticks affect hundreds of millions of people and account for nearly three million deaths all over the world. In the past there was very little hope of controlling the epidemics caused by these diseases, but modern advancements in science and technology are providing a variety of ways in which these diseases can be handled. Clearly, the process of transmission of an infectious disease is a nonlinear (not necessarily linear) dynamic process which can be understood only by appropriately quantifying the vital parameters that govern these dynamics.

The Dynamic Nature of Mitochondria: from Ultrastructure to Health and Disease (Oxidative Stress and Disease)

by Andreas S. Reichert

Mitochondrial research has exploded over the last ~150 years. This book gives an amazing view on a conceptual change in our understanding of mitochondrial biology. It becomes clear that mitochondria are extremely dynamic in nature, controlling life at multiple levels. Mitochondria rule energy conversion, adapt cells well to changing stress and nutrient conditions, and regulate many cellular processes including immunity. The dynamic nature of mitochondria occurs at an intramitochondrial level but also includes its ability to interact with other organelles and to modulate multiple signalling pathways. It is thus not surprising that alterations or inabilities to ensure this dynamic behaviour is linked to ageing and human diseases.The following sections give an updated view on mitochondria: Mitochondrial ultrastructure: molecular mechanisms shaping the inner membrane Mitochondrial cristae and lipid dynamics: from super-resolution microscopy to lipid-OXPHOS interplay Mitochondrial control of cellular homeostasis: from redox signalling to interorganellar contact sites Mitochondria in health and disease: from mtDNA release to Complex I assembly Advanced methods in mitochondrial biology and metabolism research Integrative view on mitochondrial research and outlook The field of mitochondrial research has always been full of surprises and has helped science to advance tremendously. It developed hand in hand with landmark developments in technology, such as super-resolution microscopy (nanoscopy), and is currently influencing an increasing number of scientific disciplines. There is still much ‘new’ to find out about this ‘old’ organelle and I think that you can find interesting and also unexpected aspects of mitochondrial biology in this book. I hope the book will enhance your scientific curiosity and inspire your own research.

Dynamic Optimization

by Karl Hinderer Ulrich Rieder Michael Stieglitz

This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.

Dynamic Paleontology

by Mark A. S. Mcmenamin

Using a series of case studies, the book demonstrates the power of dynamic analysis as applied to the fossil record. Written in an engaging and informative style, Dynamic Paleontology outlines the best application of quantitative and other tools to critical problems in the paleontological sciences including such topics as analysis of the Cambrian Explosion and the question regarding the presence of life on Mars. The book considers how we think about certain types questions and shows how we can refine our approach to analysis right from the beginning of any particular research effort. The analytical tools presented here will have wide application to other fields of knowledge; as such the book represents a major contribution to our deployment of modern scientific method.

Dynamic Power Supply Transmitters: Envelope Tracking, Direct Polar, and Hybrid Combinations (The Cambridge RF and Microwave Engineering Series)

by Earl Mccune

Learn how envelope tracking, polar modulation, and hybrid designs using these techniques, really work. The first physically based and coherent book to bring together a complete overview of such circuit techniques, this is an invaluable resource for practising engineers, researchers and graduate students working on RF power amplifiers and transmitters. Learn how to create more successful designs. • Step-by-step design guidelines and real world case studies show you how to put these techniques into practice • A survey of how various transistor technologies help you to choose which transistor type to use for best results • Detail on the test and measurement of all aspects of these designs explains how to measure what the circuit is actually doing and how to interpret measurement results. The first book to provide a physically consistent overview of dynamic power supply technologies and circuit techniques for increased transmitter energy efficiency. Covers the basic physical theory as well as providing case studies, step-by-step design guidelines, and practical advice for practitioners. Includes a survey of current transistor technologies and details on the testing and calibration of all aspects of such designs.

Dynamic Programming for Impulse Feedback and Fast Controls: The Linear Systems Case (Lecture Notes in Control and Information Sciences #468)

by Alexander B. Kurzhanski Alexander N. Daryin

Dynamic Programming for Impulse Feedback and Fast Controls offers a description of feedback control in the class of impulsive inputs. This book deals with the problem of closed-loop impulse control based on generalization of dynamic programming techniques in the form of variational inequalities of the Hamilton–Jacobi–Bellman type. It provides exercises and examples in relation to software, such as techniques for regularization of ill-posed problems. It also gives an introduction to applications such as hybrid dynamics, control in arbitrary small time, and discontinuous trajectories.This book walks the readers through:the design and description of feedback solutions for impulse controls;the explanation of impulses of higher order that are derivatives of delta functions;the description of their physically realizable approximations - the fast controls and their approximations;the treatment of uncertainty in impulse control and the applications of impulse feedback. Of interest to both academics and graduate students in the field of control theory and applications, the book also protects users from common errors , such as inappropriate solution attempts, by indicating Hamiltonian techniques for hybrid systems with resets.

Dynamic Pulsed-Field-Gradient NMR

by Geir Humborstad Sørland

Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

Refine Search

Showing 21,176 through 21,200 of 82,321 results