- Table View
- List View
Elementary Cluster Analysis: Four Basic Methods that (Usually) Work
by James C. BezdekThe availability of packaged clustering programs means that anyone with data can easily do cluster analysis on it. But many users of this technology don't fully appreciate its many hidden dangers. In today's world of "grab and go algorithms," part of my motivation for writing this book is to provide users with a set of cautionary tales about cluster analysis, for it is very much an art as well as a science, and it is easy to stumble if you don't understand its pitfalls. Indeed, it is easy to trip over them even if you do! The parenthetical word usually in the title is very important, because all clustering algorithms can and do fail from time to time. Modern cluster analysis has become so technically intricate that it is often hard for the beginner or the non-specialist to appreciate and understand its many hidden dangers. Here's how Yogi Berra put it, and he was right: In theory there's no difference between theory and practice. In practice, there is ~Yogi Berra This book is a step backwards, to four classical methods for clustering in small, static data sets that have all withstood the tests of time. The youngest of the four methods is now almost 50 years old: Gaussian Mixture Decomposition (GMD, 1898) SAHN Clustering (principally single linkage (SL, 1909)) Hard c-means (HCM, 1956, also widely known as (aka) "k-means") Fuzzy c-means (FCM, 1973, reduces to HCM in a certain limit) The dates are the first known writing (to me, anyway) about these four models. I am (with apologies to Marvel Comics) very comfortable in calling HCM, FCM, GMD and SL the Fantastic Four. Cluster analysis is a vast topic. The overall picture in clustering is quite overwhelming, so any attempt to swim at the deep end of the pool in even a very specialized subfield requires a lot of training. But we all start out at the shallow end (or at least that's where we should start!), and this book is aimed squarely at teaching toddlers not to be afraid of the water. There is no section of this book that, if explored in real depth, cannot be expanded into its own volume. So, if your needs are for an in-depth treatment of all the latest developments in any topic in this volume, the best I can do - what I will try to do anyway - is lead you to the pool, and show you where to jump in.
Elementary Excitations In Solids: Lectures On Protons, Electrons, And Plasmons (Frontiers In Physics Ser.)
by David PinesThis text continues to fill the need to communicate the present view of a solid as a system of interacting particles which, under suitable circumstances, behaves like a collection of nearly independent elementary excitations. In addition to introducing basic concepts, the author frequently refers to experimental data. Usually, both the basic theory and the applications discussed deal with the behavior of '`'simple' metals, rather than the '`'complicated' metals, such as the transition metals and the rare earths. Problems have been included for most of the chapters.
Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods
by Nandan K. Sinha N. AnanthkrishnanElementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods, Second Edition is aimed at senior undergraduate and graduate students of aerospace and mechanical engineering. The book uses an optimal mix of physical insight and mathematical presentation to illustrate the core concepts of professional aircraft flight dynamics. An updated version of the aerodynamic model is presented with the corrected definition of rate (dynamic) derivatives, supported with examples of real-life airplanes and related data and by open-source computational tools. It introduces bifurcation and continuation methods as a tool for flight dynamic analysis. FEATURES Covers an up-to-date, corrected, ‘clean’ presentation of the elements of flight dynamics Presents a blend of theory, practice and application with real-life practical examples Provides a unique viewpoint of applied aerodynamicists and aircraft designers Introduces bifurcation and continuation methods as a tool for flight dynamics analysis Includes a computational tool with real-life examples carried throughout the chapters The book is enriched with case studies of flight dynamics of a bird’s flight, of a six-seater rigid-wing airplane from a design perspective, and airship dynamics to highlight the modal behaviour of similar-looking vehicles that are distinct from each other. Excerpts from reviews of the first edition: "Flight dynamics is a topic that can cause difficulties to aerospace engineering students. This text leads the reader gently through the material with plenty of practical examples and student exercises. As such, it is easy to follow the material and to gradually develop a deep understanding of a demanding topic. The book is ideal for undergraduate students and is a good text for graduate students."––James F. Whidborne, Cranfield University, United Kingdom "The book covers all the aspects of flight dynamics traditionally found in such texts interspersed with examples of the treatment of features of current air vehicles....In my opinion, this book covers the subject comprehensively and is a desirable reference source for undergraduates and graduates alike."––R.J. Poole, MRAeS, The Aeronautical Journal, June 2014 "The book design and the methodology of interpretation are directed to a wide range of target audience/population interested in studying the dynamics of flight. Given the scale and organization of information, the book will also be a useful tool in the analysis of flight dynamics for professionals in this field. The book is sure to appeal to anyone interested in the dynamics of flight."––Jaroslav Salga, Advances in Military Technology, June 2014
Elementary Food Science (Food Science Text Series)
by Richard Owusu-Apenten Ernest R. VieiraFollowing the success of the popular introductory text,Elementary Food Science(5th edition) coversabroad range of food science topics organized infour parts; Part (1)Interrelated food science topics, Part (2)Food safety & sanitation, Part (3)Food preservation and processing and Part (4)Handling & processing of foods. The opening two chapters discuss what food science actually is, the significanceforsociety, and the large contribution of the food industry to jobs and revenue in the USA and globally. Succeeding chapterscover food regulatory agencies, food labels, food quality and sensory evaluation, and consumer food literacy. Part (2)hastwo new chapters explaininghow microbes affect food quality,and alsofoodborne disease outbreaks; GMP is described independently and as a prerequisite for HACCP, VACCP andTACCPfood-safety management systems. Part (3) containstwo new chapters dealing with basic aspects of food processing, and the quality of dried foods. Part (4) covershandling and processing major food commodity groups (meat, dairy products, poultry and eggs, fish and shellfish, cereal grains, bakery products, fruits and vegetables, sugar confectionary). A new final chapter coversthe foodservice industry. The text highlights food science links with industry uniquelyusing the North American Industry Classification System (NAICS). Overall, the book is thoroughly modernized with over 1500 references cited in recognition of thousands of named food scientists and other professionals. The target readership remain unchanged for the current edition, i.e. Students of food science fromsenior high school, colleges or universities. Sections of the book will also appeal toadvanced readers from other disciplines with perhaps little or noprior food science experience. Additionally, readers covering the intersection of food science with culinary arts, foodservices, and nutritionor public health will find the book useful.
Elementary Introduction to Quantum Geometry
by Jan AmbjornThis graduate textbook provides an introduction to quantum gravity, when spacetime is two-dimensional. The quantization of gravity is the main missing piece of theoretical physics, but in two dimensions it can be done explicitly with elementary mathematical tools, but it still has most of the conceptional riddles present in higher dimensional (not yet known) quantum gravity. It provides an introduction to a very interdisciplinary field, uniting physics (quantum geometry) and mathematics (combinatorics) in a non-technical way, requiring no prior knowledge of quantum field theory or general relativity. Using the path integral, the chapters provide self-contained descriptions of random walks, random trees and random surfaces as statistical systems where the free relativistic particle, the relativistic bosonic string and two-dimensional quantum gravity are obtained as scaling limits at phase transition points of these statistical systems. The geometric nature of the theories allows one to perform the path integral by counting geometries. In this way the quantization of geometry becomes closely linked to the mathematical fields of combinatorics and probability theory. By counting the geometries, it is shown that the two-dimensional quantum world is fractal at all scales unless one imposes restrictions on the geometries. It is also discussed in simple terms how quantum geometry and quantum matter can interact strongly and change the properties both of the geometries and of the matter systems. It requires only basic undergraduate knowledge of classical mechanics, statistical mechanics and quantum mechanics, as well as some basic knowledge of mathematics at undergraduate level. It will be an ideal textbook for graduate students in theoretical and statistical physics and mathematics studying quantum gravity and quantum geometry. Key features: Presents the first elementary introduction to quantum geometry Explores how to understand quantum geometry without prior knowledge beyond bachelor level physics and mathematics. Contains exercises, problems and solutions to supplement and enhance learning
Elementary Mechanics Using Matlab
by Anders Malthe-SørenssenThis book - specifically developed as a novel textbook on elementary classical mechanics - shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Matlab, and a chapter devoted to the basics of scientific programming with Matlab is included. A parallel edition using Python instead of Matlab is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.
Elementary-Particle Physics: Revealing the Secrets of Energy and Matter
by Committee on Elementary-Particle PhysicsPart of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.
Elementary Particle Physics: An Intuitive Introduction
by Andrew J. LarkoskiThis modern introduction to particle physics equips students with the skills needed to develop a deep and intuitive understanding of the physical theory underpinning contemporary experimental results. The fundamental tools of particle physics are introduced and accompanied by historical profiles charting the development of the field. Theory and experiment are closely linked, with descriptions of experimental techniques used at CERN accompanied by detail on the physics of the Large Hadron Collider and the strong and weak forces that dominate proton collisions. Recent experimental results are featured, including the discovery of the Higgs boson. Equations are supported by physical interpretations, and end-of-chapter problems are based on datasets from a range of particle physics experiments including dark matter, neutrino, and collider experiments. A solutions manual for instructors is available online. Additional features include worked examples throughout, a detailed glossary of key terms, appendices covering essential background material, and extensive references and further reading to aid self-study, making this an invaluable resource for advanced undergraduates in physics.
Elementary Particle Physics: Quantum Field Theory and Particles V1
by Yorikiyo NagashimaMeeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this book directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the standard model, and rounded off with numerous useful appendices. A timely volume for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. Volume 2 concentrates on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it gives some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.
Elementary Particle Physics
by Yorikiyo NagashimaThis second volume of Elementary Particle Physics, "Foundations of the Standard Model", concentrates on the main aspects of the Standard Model by addressing developments from its establishments to recent progress and some future prospects. Two subjects are clearly separated which cover dynamics of the electroweak and strong interactions, but basso continuo throughout the book is a bridge between theory and experiments. All the basic formulas are derived from the first principle, and corrections to meet the experimental accuracy are explained. This volume is a logical step up from volume I but can also be considered and used as an independent monograph for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics.
Elementary Particle Physics in a Nutshell (In a Nutshell #11)
by Christopher G. TullyAn introduction to high-energy physics that prepares students to understand the experimental frontierThe new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs.Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged from a course at Princeton University, also provides a comprehensive understanding of the subject. It explains every elementary particle physics process—whether it concerns nonaccelerator experiments, particle astrophysics, or the description of the early universe—as a gauge interaction coupled to the known building blocks of matter. Designed for a one-semester course that is complementary to a course in quantum field theory, the book gives special attention to high-energy collider physics, and includes a detailed discussion of the state of the search for the Higgs boson.Introduces elementary particle processes relevant to astrophysics, collider physics, and the physics of the early universeCovers experimental methods, detectors, and measurementsFeatures a detailed discussion of the Higgs boson searchIncludes many challenging exercisesProfessors: A supplementary Instructor's Manual which provides solutions for Chapters 1-3 of the textbook, is available as a PDF. It is restricted to teachers using the text in courses. To obtain a copy, please email your request to: Ingrid_Gnerlich "at" press.princeton.edu.
Elementary Particles and The Laws of Physics: The 1986 Dirac Memorial Lectures
by Richard P. Feynman Steven WeinbergPerhaps the two most important conceptual breakthroughs in twentieth century physics are relativity and quantum mechanics. Developing a theory that combines the two seamlessly is a difficult and ongoing challenge. This accessible book contains intriguing explorations of this theme by the distinguished physicists Richard Feynman and Steven Weinberg. Richard Feynman's contribution examines the nature of antiparticles, and in particular the relationship between quantum spin and statistics. In his essay, Steven Weinberg speculates on how Einstein's theory of gravitation might be reconciled with quantum theory in the final laws of physics. Both these Nobel laureates have made huge contributions to fundamental research in physics, as well as to the popularization of science. Anyone interested in the development of modern physics will find this a fascinating book.
Elementary Particles and the Early Universe: A Synergy of Particle Physics and Cosmology in the Birth and Evolution of the Universe
by Eitan Abraham Andrés J. KreinerThe birth of the Universe, and its subsequent evolution, is an exciting blend of Cosmology, Particle Physics and Thermodynamics. This book, with its synoptic approach, provides an accessible introduction to these fascinating topics. It begins in Part I with an overview of cosmology and is followed by a discussion on the present understanding about the birth of the universe, detailing the Planck Era, Inflation, and the Big Bang. It speculates the possibility of multiple universes. Before moving on to explore the essentials of the Standard Model of Particle Physics in Part II, with particular stress on the electroweak force, the first example of acquisition of mass by gauge bosons via the Higgs mechanism. The book finishes in Part III with the thermal history of the Universe. This will also lead to understanding baryonic matter and baryogenesis as well as nucleosynthesis This book is suitable for those taking courses on particle physics, general relativity, and cosmology. Readers mathematically inclined who wish to enhance their basic knowledge about the early Universe, will also find this book suitable to move up to the next level. Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology
Elementary Particles and Their Interactions (Graduate Texts in Physics)
by Stephen P. Martin James D. WellsThe Standard Model of elementary particle physics was tentatively outlined in the early 1970s. The concepts of quarks, leptons, neutrinos, gauge symmetries, chiral interactions, Higgs boson, strong force, weak force, and electromagnetism were all put together to form a unifying theory of elementary particles. Furthermore, the model was developed within the context of relativistic quantum field theory, making it compatible with all of the laws of Einstein's Special Relativity. The successes of the Standard Model over the years have been tremendous and enduring, leading up to the recent discovery and continuing study of the Higgs boson. This book is a comprehensive and technical introduction to Standard Model physics. Martin and Wells provide readers who have no prior knowledge of quantum field theory or particle physics a firm foundation into the fundamentals of both. The emphasis is on obtaining practical knowledge of how to calculate cross-sections and decay rates. There is no better way to understand the necessary abstract knowledge and solidify its meaning than to learn how to apply it to the computation of observables that can be measured in a laboratory. Beginning graduate students, both experimental and theoretical, and advanced undergraduate students interested in particle physics, will find this to be an ideal one-semester textbook to begin their technical learning of elementary particle physics.
Elementary Principles in Statistical Mechanics: Developed With Especial Reference To The Rational Foundation Of Thermodynamics (Dover Books on Physics)
by J. Willard GibbsWritten by J. Willard Gibbs, the most distinguished American mathematical physicist of the nineteenth century, this book was the first to bring together and arrange in logical order the works of Clausius, Maxwell, Boltzmann, and Gibbs himself. The lucid, advanced-level text remains a valuable collection of fundamental equations and principles. Topics include the general problem and the fundamental equation of statistical mechanics, the canonical distribution of the average energy values in a canonical ensemble of systems, and formulas for evaluating important functions of the energies of a system. Additional discussions cover maximum and minimal properties of distribution in phase, a valuable comparison of statistical mechanics with thermodynamics, and many other subjects.
Elementary Principles of Chemical Processes
by Richard M. Felder Ronald W. RousseauElementary Principles of Chemical Processes, 4th Edition prepares students to formulate and solve material and energy balances in chemical process systems and lays the foundation for subsequent courses in chemical engineering. The text provides a realistic, informative, and positive introduction to the practice of chemical engineering.
Elementary Quantum Chemistry, Second Edition (Dover Books on Chemistry)
by Frank L. PilarAs the author notes in the Preface to this valuable text, experimental chemists have moved past studying the average behavior of atoms or molecules "to probe the step-by-step behavior of individual atoms and molecules as they collide, form 'transition states,' and ultimately form products." In such experiments, quantum mechanical computations do two useful tasks: They fill in the observational gaps and help to interpret what has been observed.This introductory course -- developed by the former chairman of the chemistry department at the University of New Hampshire -- covers, among other topics, the origins of the quantum theory, the Schrödinger wave equation, the quantum mechanics of simple systems, the rigid rotator, the hydrogen atom, electron spin and many-electron systems, the quantum states of atoms, the Hartree-Fock self-consistent field method, the electronic structure of molecules, and semi-empirical molecular orbital methods. One of the great values of the course is its calculations and diagrams, which were created specifically for this text and which students will be able to replicate on their home computers.The text will be most useful for advanced undergraduate or beginning graduate students who have had calculus and at least a year of undergraduate physics. A knowledge of differential equations, linear algebra, and atomic physics is helpful but not essential. Seven appendices give a concise exposition of mathematical and physical material that may not be part of the students' background.
Elementary Quantum Mechanics (Dover Books on Physics)
by David S. SaxonBased on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, most of the book is confined to considerations of one-dimensional systems. A selection of 150 problems, many of which require prolonged study, amplify the text's teachings and an appendix contains solutions to 50 representative problems. This edition also includes a new Introduction by Joseph A. Rudnick and Robert Finkelstein.
Elementary Regression Modeling: A Discrete Approach
by Roger A. WojtkiewiczElementary Regression Modeling builds on simple differences between groups to explain regression and regression modeling. User-friendly and immediately accessible, this book gives readers a thorough understanding of control modeling, interaction modeling, modeling linearity with spline variables, and creating research hypotheses that serve as a conceptual basis for many of the processes and procedures quantitative researchers follow when conducting regression analyses.
Elementary Regression Modeling: A Discrete Approach
by Roger A. WojtkiewiczElementary Regression Modeling builds on simple differences between groups to explain regression and regression modeling. User-friendly and immediately accessible, this book gives readers a thorough understanding of control modeling, interaction modeling, modeling linearity with spline variables, and creating research hypotheses that serve as a conceptual basis for many of the processes and procedures quantitative researchers follow when conducting regression analyses.
Elementary Science
by Scott ForesmanNext Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it. NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
Elementary Science Methods: A Constructivist Approach
by David Jerner MartinIn this pioneering text, a constructivist approach guides users in learning how to teach in a constructivist manner. The book is based on the belief that items more important for children to learn how to do science than it is for them to learn about science, and that teachers of elementary science do not need to know a great deal of science to teach it effectively, but rather need to be co-inquirers with their students. More than 170 process-oriented activities, organized by grade level, help practicing teachers encourage children to develop and perform their own investigations.
Elementary Science Teacher Education: International Perspectives on Contemporary Issues and Practice
by Ken AppletonCo-Published with the Association For Science Teacher Education. Reflecting recent policy and standards initiatives, emerging research agendas, and key innovations, this volume provides a contemporary overview of important developments and issues that have that have in recent years shaped elementary science education pre-service courses and professional development, and practices that are shaping future directions in the field. Contributors from several countries who are actively engaged in research and design in elementary science education address:*Conceptual issues which impinge on contemporary science teacher education;*Intersections of content, pedagogy, and practice; and*Professional development as a contextualized practice.Elementary Science Teacher Education: International Perspectives on Contemporary Issues and Practice offers a clear picture of the current state of the field and directions for the future--to the benefit of elementary science teacher educators, aspiring teacher educators, school policy makers, other professionals involved in science education and, ultimately, the millions of elementary school children who will gain from improved practice.
Elementary Semiconductor Device Physics: Understanding Energy Band Formation Using Circuit Theory
by Kazuya Masu Shuhei AmakawaThis book by two leading experts on integrated circuit design adopts an untraditional approach to introducing semiconductor devices to beginners. The authors use circuit theory to provide a digestible explanation of energy band theory and understanding of energy band diagrams. After briefly summarizing the basics of semiconductors, the authors describe semiconductor devices from a circuit theoretic point of view, making the book especially suitable for circuit design students and engineers. Further to the emphasis on the circuit perspective, the book then uses circuit theory to introduce readers to the famously indigestible “energy bands” of crystalline solids. Additionally, the book explains how to read physics from “energy band diagrams” of semiconductor devices in great detail. The key to appreciating the real power of energy band diagrams is shown to lie in the understanding of the concept of the “quasi-Fermi levels,” introduced in 1949 by William Shockley but remaining elusive to date and therefore often omitted from energy band diagrams. To rectify this, some of the energy band diagrams presented in this book, complete with quasi-Fermi levels, were drawn using a device simulator (a.k.a. technology computer-aided design; TCAD), offering quantitative information about device physics. The book could, therefore, also serve as a hands-on course text in TCAD-drawn band diagram reading.Because no prior exposure to quantum mechanics is required and the book does not attempt to teach it, this book is ideal for students in various disciplines who may or may not be specializing in semiconductor devices. The numerous practical examples of reading TCAD-based energy-band diagrams are also invaluable to practicing semiconductor device engineers.
Elementary Statistical Physics
by Charles KittelNoteworthy for the philosophical subtlety of its foundations and the elegance of its problem-solving methods, statistical mechanics can be employed in a broad range of applications -- among them, astrophysics, biology, chemistry, nuclear and solid state physics, communications engineering, metallurgy, and mathematics. Geared toward graduate students in physics, this text covers such important topics as stochastic processes and transport theory in order to provide students with a working knowledge of statistical mechanics.To explain the fundamentals of his subject, the author uses the method of ensembles developed by J. Willard Gibbs. Topics include the properties of the Fermi-Dirac and Bose-Einstein distributions; the interrelated subjects of fluctuations, thermal noise, and Brownian movement; and the thermodynamics of irreversible processes.Negative temperature, magnetic energy, density matrix methods, and the Kramers-Kronig causality relations are treated briefly. Most sections include illustrative problems. Appendix. 28 figures. 1 table.