Browse Results

Showing 24,701 through 24,725 of 84,840 results

Enzymatic Synthesis of Structured Triglycerides

by María Luján Ferreira Gabriela Marta Tonetto

This brief presents the state of the art on enzymatic synthesis of structured triglycerides and diglycerides, focusing on glycerol as the substrate and covering interesterification of vegetable oils in one and two steps. It critically reviews the available literature on enzymatic and chemo-enzymatic synthesis of di- and triglycerides in one or more steps. The effects of the structure, length and unsaturation of the fatty acids are carefully considered, as well as the inhibitory potential of highly unsaturated complex fatty acid structures. The brief also addresses acyl migration and the use of adsorbents, taking into account the most recent literature and presenting the problem in an industrial context. It discusses experimental and analytical problems concerning, e.g. the lab scale and the scaling up to bench and pilot plants. Several examples are presented, and their successes and failures are assessed. Biocatalysts based on lipases are analyzed with regard to problems of immobilization, stability on storage time and activity after multiple uses. The need for specific Sn-2 lipases is presented and strategies for optimizing Sn-2 esterification are discussed. Lastly, practical aspects are examined, e.g. lipase “leaching” with loss of activity, taking into account the latest findings on continuous and batch reactor configurations and presenting the advantages and disadvantages of each.

Enzymatic Technologies for Marine Polysaccharides

by Antonio Trincone

The bioactivity potential of marine polysaccharides has long been considered an underexploited aspect. These molecules found in seaweed, microalgae, bacteria, and animal fish (shellfish, mollusks, etc.) and the derived oligosaccharides need to be explored thoroughly with an interdisciplinary approach. They are an extraordinary source of chemical diversity, and the literature highlights many applicative fields, including the food industry, cosmetics, biomedicine, agriculture, environmental protection, wastewater management, etc. More recently, a new challenge has emerged: the exploitation of marine biomass as the source of sustainable energy to participate in the future replacement of fossil resources. Enzymatic Technologies for Marine Polysaccharides provides insight into the recent research developments of marine polysaccharides and their current and potential applications. The first section of the book explores the diversity of marine polysaccharides from various angles, including a description of the chemical complexity and current applications and new perspectives in food, pharmaceutical, cosmetics, and biomaterials offered by recent research. Efficient valorization of the marine polysaccharide biomass requires a rigorous analysis of the polysaccharides structure and their biological properties. The second section of the book concerns the development of extraction techniques and the improvement of the methods aimed at the characterization of their structure and function. Finally, the third and last section of the book articulates the enzymatic technologies from the discovery of novel enzymes to their production pipelines related to the fields of biorefinery, food, pharmaceutics, and other fine chemicals. Presents the latest research in marine oligosaccharides and polysaccharides Written by world-class researchers in marine enzyme technology Discusses the latest developments in extraction methods Presents a detailed overview of enzymatic routes for modification, production, and synthesis of marine oligosaccharides Contains extensive references at the end of each chapter to enhance further study

Enzymatic Transformation

by Soundar Divakar

Transformations using enzymes have been extensively investigated in the last two decades and the results promise great potential for this growing field, especially in the area of synthetic organic chemistry mainly due to of its many advantages. Accordingly, this book has attempted to bring out the advantages of using enzymes involving complex underivatized and unprotected substrates in non-polar media under homogenous and heterogeneous reaction conditions. Merits and demerits of using enzymes in terms of yields and selectivity/specificity are presented without any prejudice. Almost all the reactions dealt with are from the author's laboratory comprising diverse substrates, and the catalysis involves two important hydrolyzing enzymes, extensively examined for the reverse reactions. Thus, esterification involving lipses and glycosylation involving glycosidases were investigated with respect to various strategies like optimization of reaction conditions, response surface methodology and kinetics, carrying out reactions under solvent, non-solvent and super critical carbon dioxide conditions. In short, the work presented is to ensure the comprehension of the problems faced by the researchers in this area so as to work out further efficient strategies for carrying out enzymatic transformations in the laboratory successfully with better yields and specificity.

Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives

by Jesús Fernández Lucas María-José Camarasa Rius

A review of innovative tools for creative nucleic acid chemists that open the door to novel probes and therapeutic agents Nucleic acids continue to gain importance as novel diagnostic and therapeutic agents. With contributions from noted scientists and scholars, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practical reference that includes a wide range of approaches for the synthesis of designer nucleic acids and their derivatives. The book covers enzymatic (including chemo-enzymatic) methods, with a focus on the synthesis and incorporation of modified nucleosides. The authors also offer a review of innovative approaches for the non-enzymatic chemical synthesis of nucleic acids and their analogs and derivatives, highlighting especially challenging species. The book offers a concise review of the methods that prepare novel and heavily modified polynucleotides in sufficient amount and purity for most clinical and research applications. This important book: -Presents a timely and topical guide to the synthesis of designer nucleic acids and their derivatives -Addresses the growing market for nucleotide-derived pharmaceuticals used as anti-infectives and chemotherapeutic agents, as well as fungicides and other agrochemicals. -Covers novel methods and the most recent trends in the field -Contains contributions from an international panel of noted scientistics Written for biochemists, medicinal chemists, natural products chemists, organic chemists, and biotechnologists, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practice-oriented guide that reviews innovative methods for the enzymatic as well as non-enzymatic synthesis of nucleic acid species.

Enzymatic polymerization of phenolic compounds by oxidoreductases

by Latifa Chebil Mohamed Ghoul

The enzymatic polymerization of phenolic compounds has been generating interest in several fields such as food, cosmetics, and pharmaceuticals. These compounds are employed for their antioxidant properties; however, their use is limited by their low solubility and thermal stability. Polymerization can improve their solubility and their thermal stability though and create new properties which are dependent on the molecular mass and the structure of polymers. The reaction yield, the polydispersity, the molecular mass, the structure and the properties of synthesized polymers can be controlled by the mode of control of the reaction and by the reaction conditions. Enzymatic polymerization of phenolic compounds by oxidoreductases analyze the processes used and the key factors (temperature, solvent, origin of the enzyme, structure of the substrate, reactor design, ...) which control the polymerization of phenolic species by these oxidoreductase enzymes in order to obtain polymers with desired characteristics and properties.

Enzyme Cascade Design and Modelling

by Selin Kara Florian Rudroff

This book provides a comprehensive overview of the recent developments achieved in the field of chemo/enzymatic cascades with topics spanning from design (in vitro and in vivo) to kinetic- and process modelling as well as process control. Opportunities and challenges of building multi-step chemo/enzymatic reactions are discussed, whereby the latter are critically assessed in each chapter and methods to ease the implementation are explored. Both, multi-enzymatic cascades and chemo-enzymatic cascades are presented with the motivation of combining the strengths of these two worlds (e.g. selectivity, activity and robustness) not neglecting the obstacles and challenges of such endeavour. Furthermore, the use of non-conventional media for catalytic cascade reactions, recent achievements and potential for future developments in a technical environment are addressed.

Enzyme Catalysis Today and the Chemistry of the 21st Century

by Gertz I. Likhtenshtein

This book examines enzymatic reactions from the standpoint of physical chemistry. An introductory chapter gives a brief overview of the role of enzymes in metabolism, biotechnology and medicine, while describing the framework for chemical mimicry of enzyme reactions. Subsequent chapters of the book are devoted to a general overview of vital enzyme processes, methods of enzyme kinetic reactions, the theory of elementary mechanisms, oriental, dynamic and polar factors affecting enzyme catalysts, as well as the current status and prospects of enzyme chemical modeling. The book gives particular attention to chemical reactions highly important in modern research efforts, such as the conversion of light energy into chemical energy with a high quantum yield, photooxidation of water, reduction of atmospheric nitrogen, and utilization of carbon dioxide in ambient conditions. The book is intended for scientists working on enzyme catalysis and the adjacent areas such as chemical modeling of biological processes, homogeneous catalysis, biomedical research, biotechnology and bioengineering. In addition, it can serve as secondary instructional material for graduate and undergraduate students of chemistry, medicine, biochemistry, biophysics, biophysiology, and bioengineering.

Enzyme Engineering

by James C. Samuelson

Whether the pursuit is commercially motivated or purely academic, engineering a novel biological catalyst is an enticing challenge. High-resolution protein structure analysis allows for rational alteration of enzyme function, yet many useful enzyme variants are the product of well-designed selection schemes or screening strategies. Enzyme Engineering: Methods and Protocols provides guidance to investigators wishing to create enzyme variants with desired properties. This detailed volume covers such topics as a simple method for generating site-specific mutations within bacterial chromosomes. It also highlights the engineering of two difference types of rare-cutting endonucleases that show great potential in gene therapy applications: The newest development is the emergence of TAL effector nucleases or TALENs. Chapters describe newly developed technologies in sufficient detail so that each method can be practiced in a standard molecular biology laboratory. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible Enzyme Engineering: Methods and Protocols will be valuable for scientists with a budding interest in protein engineering as well as veterans looking for new approaches to apply in established discovery programs.

Enzyme Engineering: Methods and Protocols (Methods in Molecular Biology #2397)

by Francesca Magnani Chiara Marabelli Francesca Paradisi

This book provides comprehensive methods and protocols about enzyme design. The chapters are grouped by main topic, starting with methodologies describing library preparation and screening, state of the art techniques in directed evolution and rational design, followed by examples of immobilization of enzymes on sustainable polymers, as well as biocatalytic conversions mediated by homogenous enzymatic preparations or whole cells. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and timely, Enzyme Engineering: Methods and Protocols is an ideal guide for both the novice and the veteran researcher interested in biocatalysis.Chapter 13 is available open access under a CC BY 4.0 license.

Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science

by Manfred T. Reetz Zhoutong Sun Ge Qu

Enzyme Engineering An authoritative and up-to-date discussion of enzyme engineering and its applications In Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science, a team of distinguished researchers deliver a robust treatment of enzyme engineering and its applications in various fields such as biotechnology, life science, and synthesis. The book begins with an introduction to different protein engineering techniques, covers topics like gene mutagenesis methods for directed evolution and rational enzyme design. It includes industrial case studies of enzyme engineering with a focus on selectivity and activity. The authors also discuss new and innovative areas in the field, involving machine learning and artificial intelligence. It offers several insightful perspectives on the future of this work. Readers will also find: A thorough introduction to directed evolution and rational design as protein engineering techniques Comprehensive explorations of screening and selection techniques, gene mutagenesis methods in directed evolution, and guidelines for applying gene mutagenesis in organic chemistry, pharmaceutical applications, and biotechnology Practical discussions of protein engineering of enzyme robustness relevant to organic and pharmaceutical chemistry Treatments of artificial enzymes as promiscuous catalysts Various lessons learned from semi-rational and rational directed evolution A transdisciplinary treatise, Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science is perfect for protein engineers, theoreticians, organic, and pharmaceutical chemists as well as transition metal researchers in catalysis and biotechnologists.

Enzyme Functionality: Design: Engineering, and Screening

by Allan Svendsen

Enzyme Functionality serves as a conduit for trailblazing research in enzyme engineering-relating current understanding of sequence families, the new notion of enzyme structure classes, and modern methods in protein engineering, design, and directed evolution to accelerate the development of novel enzyme functionalities. This reference gathers the

Enzyme Immunoassay

by Edward T. Maggio

The purpose of this book is to focus attention on some of these ideas and concepts. In doing so, it has captured a glimpse of the past and it attempts a projection of the future, but mostly it reveals an overview of the field as it exists as the present time. It aims to serve to spawn further growth in ideas and encourage applications to increasingly broader segments of both clinical and general analytical chemistry fields.

Enzyme Kinetics

by Robert A. Alberty

Rapid-Equilibrium Enzyme Kinetics helps readers emphasize the estimation of kinetic parameters with the minimum number of velocity measurements, thereby reducing the amount of laboratory work necessary, and allowing more time for the consideration of complicated mechanisms. The book systematically progresses through six levels of understanding the enzyme-catalyzed reaction, and includes a CD-ROM so that the reader may use the programs in the book to input their own experimental data.

Enzyme Kinetics and Mechanism

by Paul F. Cook W. W. Cleland

Enzyme Kinetics and Mechanism is a comprehensive textbook on steady-state enzyme kinetics. Organized according to the experimental process, the text covers kinetic mechanism, relative rates of steps along the reaction pathway, and chemical mechanism—including acid-base chemistry and transition state structure. Practical examples taken from the literature demonstrate theory throughout. The book also features numerous general experimental protocols and how-to explanations for interpreting kinetic data. Written in clear, accessible language, the book will enable graduate students well-versed in biochemistry to understand and describe data at the fundamental level. Enzymologists and molecular biologists will find the text a useful reference.

Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications (Methods in Molecular Biology #2342)

by Swati Nagar Upendra A. Argikar Donald Tweedie

This second edition further develops the principles of applying kinetic principles to drug metabolizing enzymes and transporters. Chapters are divided into six sections detailing fundamental principles of enzyme kinetics, enzyme and transporter structures, highlighting specific oxidative and conjugative drug metabolizing enzymes and drug transporters, modeling approaches for drug metabolizing enzymes and transporters, understanding of variability both experimental and interindividual (pharmacogenomic), and expanded case studies that provide real life examples of applying these principles. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, in some cases step-by-step instructions with readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls with extensive cross referencing to assist in learning. Authoritative and fully updated, Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications, Second Edition serves as a practical teaching tool for novice and advanced scientists interested in the fundamental concepts.

Enzyme Kinetics: Principles and Methods

by Hans Bisswanger

This new, expanded and updated edition of the user-friendly and comprehensive treatise on enzyme kinetics expertly balances theory and practice. This is an indispensable aid for advanced students and professionals working with enzymes, whether biochemists, biotechnologists, chemical biologists, pharmacologists or bioengineers in academia, industry and clinical research.

Enzyme Kinetics: Principles and Methods

by Hans Bisswanger

Now in full color for a more intuitive learning experience, this new edition of the long-selling reference also features a number of new developments in methodology and the application of enzyme kinetics. Starting with a description of ligand binding equilibria, the experienced author goes on to discuss simple and complex enzyme reactions in kinetic terms. Special cases such as membrane-bound and immobilized enzymes are considered, as is the influence of external conditions, such as temperature and pH value. The final part of the book then covers a range of widely used measurement methods and compares their performance and scope of application. With its unique mix of theory and practical advice, this is an invaluable aid for teaching as well as for experimental work.

Enzyme Mixtures and Complex Biosynthesis

by Sanjoy K. Bhattacharya

In this book, an ensemble of examples is provided to illustrate the diversity of approaches and applications to which the multi-enzyme catalysis is currently applied. Enzymes act in living beings as extremely complex, network mixtures that are supportive of all the biochemical transformations on which the life is based. In the biotechnological context, many of the enzymatic processes performed in vitro at both small and industrial scales lie on the enzymatic transformation of a single molecular species for the generation of a product and as catalyzed by a single enzyme. However, the number of technological applications for which cell-free enzyme mixtures are required is increasing and the science of how to combine individual reactions in complex processes is under speedy development. Obviously, any of the current in-progress multi-enzyme processes is fully mimicking the complexity of a living cell or cell community. However, the refined combination of selected enzymes and substrates is offering a new technological approach that is supporting the development of new or improved products in many fields such as food, leather and pharmaceutical industries. This book is unique and presents selective examples of each of these processes have been incorporated in this book by experts in their respective areas.

Enzyme Regulation in Metabolic Pathways

by Lloyd Wolfinbarger Jr.

Enzyme Regulation in Intermediary Metabolism shows the reader how to understand the roles of enzymes and their kinetic constants in intermediary metabolism. It provides a means of correlating data obtained in experimental studies to multiple possible mechanisms through which some enzyme may catalyze the conversion of a substrate to a product. Although not the most appropriate means of determining some potential kinetic mechanism, quasi-equilibrium assumptions are used throughout the book, keeping the rate equation derivations simple. Actual metabolic pathways with known (presumed) positive and negative regulation events are linked to these potential kinetic mechanisms using both rate equation derivations and data plots illustrating how the rate equation derivations can be used to explain the data plots. This book will be a valuable reference for students in biological sciences and biochemistry majors required to take a core course in enzymology.

Enzyme Stabilization and Immobilization

by Shelley D. Minteer

In the past decade, researchers have made tremendous progress in the field of enzyme stabilization, opening up new opportunities for enzymes in molecular biology and for industrial applications. In Enzyme Stabilization and Immobilization: Methods and Protocols, expert researchers explore the latest developments through detailed laboratory protocols, which address many different theories and techniques in enzyme stabilization. Chapters outline protocols for enzyme stabilization in solutions, including: liposome formation, micelle introduction, crosslinking, and additives. Secondly, the book contain protocols for enzyme stabilization via enzyme immobilization, such as sol-gel encapsulation, polymer encapsulation, and single enzyme nanoparticle formation. Composed in the highly successful Methods in Molecular BiologyTM series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Comprehensive and current, Enzyme Stabilization and Immobilization: Methods and Protocols is an essential handbook for all molecular biologists, biochemists, and biomedical and biochemical engineers.

Enzyme Stabilization and Immobilization

by Shelley D. Minteer

This volume introduces the reader to the field of enzyme stabilization and the different theories of enzyme stabilization, including the use of immobilization as a stabilization technique. The first part of the book focuses on protocols for enzyme stabilization in solutions including liposome formation, micelle introduction, crosslinking, and additives. The second part of the book discusses protocols for enzyme stabilization during enzyme immobilization, including common techniques like sol-gel encapsulation, polymer encapsulation, and single enzyme nanoparticle formation. Protocols for a variety of enzymes are shown, but the enzymes are chosen as examples to show that these protocols can be used for both enzymes of biological importance, as well as enzymes of industrial importance. The final part details spectroscopic protocols, methods, and assays for studying the effectiveness of the enzyme stabilization and immobilization strategies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Enzyme Stabilization and Immobilization: Methods and Protocols, Second Edition provides molecular biologists, biochemists, and biomedical and biochemical engineers with the state-of-the-art technical information required to effectively stabilize their enzyme of interest in a variety of environments (i. e. , harsh temperature, pH, or solvent conditions).

Enzyme and Microbial Biosensors

by Kim Rogers Ashok Mulchandani

A cutting-edge collection of detailed, step-by-step techniques and protocols for constructing, evaluating, and using enzyme- and microbial-based biosensors. Ideal for novices starting research in their field or experienced researchers wanting to use a biosensor for a specific analytical measurement, the methods detailed here allow biochemists, analytical chemists, microbiologists, and engineers to successfully apply biosensor technology to their specific problems. The techniques include classical enzyme biosensors based on potentiometric, amperometric, conductimetric, optical, and thermal transducers, as well cell-based biosensors based on amperometric and optical transducers. A companion volume, Affinity Biosensors: Protocols and Techniques, by Rogers & Mulchandani, concentrates on cell- and affinity-based biosensors.

Enzyme- and Transporter-Based Drug-Drug Interactions

by A. David Rodrigues Raimund M. Peter K. Sandy Pang

Germination of the thought of "Enzymatic- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges" Proceedings came about as part of the annual meeting of The American Association of Pharmaceutical Scientists (AAPS) that was held in San Diego in November of 2007. The attendance of workshop by more than 250 pharmaceutical scientists reflected the increased interest in the area of drug-drug interactions (DDIs), the greater focus of PhRMA, academia, and regulatory agencies, and the rapid pace of growth in knowledge. One of the aims of the workshop was to address the progress made in quantitatively predicting enzyme- and transporter-based DDIs as well as highlighted areas where such predictions are poor or areas that remain challenging for the future. Because of the serious clinical implications, initiatives have arisen from the FDA (http://www.fda.gov/cber/gdlns/interactstud.htm) to highlight the importance of enzyme- and transporter-based DDIs. During the past ten to fifteen years, we have come to realize that transporters, in addition to enzymes, play a vital role in drug elimination. Such insight has been possible because of the continued growth in PK-ADME (pharmacokinetics-absorption-distribution-metabolism-excretion) knowledge, fueled by further advances in molecular biology, greater availability of human tissues, and the development of additional and sophisticated model systems and sensitive assay methods for studying drug metabolism and transport in vitro and in vivo. This has sparked an in-depth probing into mechanisms surrounding DDIs, resulting from ligand-induced changes in nuclear receptors, as well as alterations in transporter and enzyme expression and function. Despite such advances, the in vitro and in vivo study of drug interactions and the integration of various data sets remain challenging. Therefore, it has become apparent that a proceeding that serves to encapsulate current strategies, approaches, methods and applications is necessary. As Editors, we have assembled a number of opinion leaders and asked them to contribute chapters surrounding these issues. Many of these are the original Workshop speakers whereas others had been selected specially to contribute on topics related to basic and applied information that had not been covered in other reference texts on DDI. The resulting tome, entitled Enzyme- and Transporter-Based Drug Interactions: Progress and Future Challenges, comprises of four sections. Twenty-eight chapters covering various topics and perspectives related to the subject of metabolic and transporter-based drug-drug interactions are presented.

Enzyme-Based Computing Systems

by Evgeny Katz

This systematic and comprehensive overview of enzyme-based biocomputing is an excellent resource for scientists and engineers working on the design, study and applications of enzyme-logic systems.

Enzyme-Based Organic Synthesis

by Cheanyeh Cheng

Enzyme-Based Organic Synthesis An insightful exploration of an increasingly popular technique in organic chemistry In Enzyme-Based Organic Synthesis, expert chemist Dr. Cheanyeh Cheng delivers a comprehensive discussion of the principles, methods, and applications of enzymatic and microbial processes for organic synthesis. The book thoroughly explores this growing area of green synthetic organic chemistry, both in the context of academic research and industrial practice. The distinguished author provides a single point of access for enzymatic methods applicable to organic synthesis and focuses on enzyme catalyzed organic synthesis with six different classes of enzyme. This book serves as a link between enzymology and biocatalysis and serves as an invaluable reference for the growing number of organic chemists using biocatalysis. Enzyme-Based Organic Synthesis provides readers with multiple examples of practical applications of the main enzyme classes relevant to the pharmaceutical, medical, food, cosmetics, fragrance, and health care industries. Readers will also find: A thorough introduction to foundational topics, including the discovery and nature of enzymes, enzyme structure, catalytic function, molecular recognition, enzyme specificity, and enzyme classes Practical discussions of organic synthesis with oxidoreductases, including oxidation reactions and reduction reactions Comprehensive explorations of organic synthesis with transferases, including transamination with aminotransferases and phosphorylation with kinases In-depth examinations of organic synthesis with hydrolases, including the hydrolysis of the ester bond Perfect for organic synthetic chemists, chemical and biochemical engineers, biotechnologists, process chemists, and enzymologists, Enzyme-Based Organic Synthesis is also an indispensable resource for practitioners in the pharmaceutical, food, cosmetics, and fragrance industries that regularly apply this type of synthesis.

Refine Search

Showing 24,701 through 24,725 of 84,840 results