Browse Results

Showing 2,476 through 2,500 of 84,587 results

Advanced MR Neuroimaging: From Theory to Clinical Practice (Series in Medical Physics and Biomedical Engineering)

by Ioannis Tsougos

Over the last decade, some of the greatest achievements in the field of neuroimaging have been related to remarkable advances in magnetic resonance techniques, including diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. Such techniques have provided valuable insights into tissue microstructure, microvasculature, metabolism and brain connectivity. Previously available mostly in research environments, these techniques are now becoming part of everyday clinical practice in a plethora of clinical MR systems. Nevertheless, despite growing interest and wider acceptance, there remains a lack of a comprehensive body of knowledge on the subject, exploring the intrinsic complexity and physical difficulty of the techniques. This book focuses on the basic principles and theories of diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. It also explores their clinical applications and places emphasis on the associated artifacts and pitfalls with a comprehensive and didactic approach. This book aims to bridge the gap between research applications and clinical practice. It will serve as an educational manual for neuroimaging researchers and radiologists, neurologists, neurosurgeons, and physicists with an interest in advanced MR techniques. It will also be a useful reference text for experienced clinical scientists who wish to optimize their multi-parametric imaging approach.

Advanced Machining Processes: Innovative Modeling Techniques (Manufacturing Design and Technology)

by Angelos P. Markopoulos and J. Paulo Davim

Modeling and machining are two terms closely related. The benefits of the application of modeling on machining are well known. The advances in technology call for the use of more sophisticated machining methods for the production of high-end components. In turn, more complex, more suitable, and reliable modeling methods are required. This book pertains to machining and modeling, but focuses on the special aspects of both. Many researchers in academia and industry, who are looking for ways to refine their work, make it more detailed, increase their accuracy and reliability, or implement new features, will gain access to knowledge in this book that is very scare to find elsewhere.

Advanced Machining Science

by Vijay Kumar Jain

As machining processes become more advanced, so does the science behind them. This book emphasizes these scientific developments in addition to the more widely covered technological aspects, providing a full understanding of how machining has adapted to material constraints and moved beyond conventional methods in recent years. Numerous processes have been developed to allow the use of increasingly tough, corrosion-resistant, and temperature-resistant materials in machining. The advanced machining processes covered in this book range from mechanical, thermoelectric, and electrochemical, including abrasive water jet machining, electric discharge machining and micromachining, ion beam machining, and hybrid processes. It also addresses the sustainability issues raised by these processes. The underlying science of machining is centered throughout, as none of these processes can reach their full potential without both technical expertise and scientific understanding. Advanced Machining Science and its scientific approach will be of particular interest to students, researchers, and shop floor engineers.

Advanced Magnetic Adsorbents for Water Treatment: Fundamentals and New Perspectives (Environmental Chemistry for a Sustainable World #61)

by Lucas Meili Guilherme Luiz Dotto

This book compiles 15 chapters about the synthesis, characterizations, and application of many kinds of magnetic adsorbents for water treatment. It is devoted to the scientific community that works with adsorption technologies for water treatment and remediation. Specifically, for professors and Ph.D. students. It is expected that this book serves as an interesting background for researchers in the field of magnetic adsorbents for water treatment.

Advanced Magnetic and Optical Materials

by Ashutosh Tiwari Vijay Kumar Hendrik Swart Parameswar K. Iyer

Advanced Magnetic and Optical Materials offers detailed up-to-date chapters on the functional optical and magnetic materials, engineering of quantum structures, high-tech magnets, characterization and new applications. It brings together innovative methodologies and strategies adopted in the research and development of the subject and all the contributors are established specialists in the research area.

Advanced Magnetohydrodynamics

by Rony Keppens Stefaan Poedts J. P. Hans Goedbloed

Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.

Advanced Mammalian Cell Culture Techniques: Principles and Practices

by Md Enamul Hoque R. Senthilkumar K. M. Ramkumar

This up-to-date book compiles both basic and advanced laboratory techniques of mammalian cell culture. It is divided into four major sections encompassing the basics of cell culture, nucleic acid and protein isolation, cell-staining techniques, and cell transfection and single-cell analysis. The topics include aseptic handling, media preparation, and passaging of cells. The book also outlines downstream assays such as nucleic acid and protein isolation from in-vitro cell cultures. Key Features: • Covers cellular staining using fluorescent dyes, genetic manipulation of cells via transfection, and an introduction to single-cell analyses • Discusses basics in cell culture and downstream applications including gene and protein expression analysis • Includes the principles underlying each of the techniques and provides a detailed methodology to practice • Explores the whole range of techniques – from basic to downstream applications and advanced methods The book is essential for students and researchers in the field of life sciences, biotechnology, genetics, and molecular biology.

Advanced Manufacturing Operations Technologies: Principles, Applications, and Design Correlations in Chemical Engineering Fields of Practice

by Sam A. Hout

This book discusses and chronicles various types of manufacturing processes, including casting and molding, machining, joining, shearing, and forming. It refers to repetitive, discrete job shop process manufacturing (continuous) and process manufacturing (batch). It also offers detailed examples from the nuclear, electronic, plastics, adhesives, inks, packaging, chemical, and pharmaceutical industries. Advanced Manufacturing Operations Technologies: Principles, Applications, and Design Correlations in Chemical Engineering Fields of Practice fills the gap in the connection between production and regulated applications in several industries. It highlights established concepts and provides a new, fresh outlook by concentrating on and creating linkages in the implementation of practices in manufacturing and safe, clean energy systems. Case studies for the overall design, installations, and construction of manufacturing operations in various industries as well as the standard operating procedures are offered. The book also discusses the correlation between design strategies including step-by-step processes to ensure the reliability, safety, and efficacy of products. The fundamentals of controlled techniques, quality by design, risk assessment, and management are covered in support of operations applications and continuous improvement. This comprehensive book is helpful to all professionals, students, and academicians in many scientific disciplines that utilize fundamental principles of chemical engineering. It is engineering-driven and will be of use to those in industrial and manufacturing, chemical, biochemical, mechanical engineering, and automated control systems fields.

Advanced Manufacturing Technologies: Modern Machining, Advanced Joining, Sustainable Manufacturing (Materials Forming, Machining and Tribology)

by Kapil Gupta

This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

Advanced Manufacturing and Materials Science: Selected Extended Papers Of ICAMMS 2018 (Lecture Notes On Multidisciplinary Industrial Engineering)

by J. Paulo Davim Kurian Antony

Presents papers on additive manufacturing.<P><P> Peer reviewed chapters on recent advances in the manufacturing sector.<P> Discusses optimization processes in manufacturing.<P>This book presents selected papers from the international conference on advanced manufacturing and materials sciences (ICAMMS 2018). The papers reflet recent advances in manufacturing sector focusing on process optimization and give emphasis to testing and evaluation of new materials with potential use in industrial applications.

Advanced Manufacturing in Biological, Petroleum, and Nanotechnology Processing: Application Tools for Design, Operation, Cost Management, and Environmental Remediation (Green Energy and Technology)

by Augustine O. Ayeni Olagoke Oladokun Oyinkepreye David Orodu

This book covers advanced manufacturing in biological, petroleum, and nanotechnology processing for the development of novel products and systems that incorporate enhanced pollution control and waste management for environmental remediation. The book is divided into three parts. The first section looks at the design and application of process systems, the second section focuses largely on pollution control and management, and the final section discusses areas related to process modeling and simulation. Coverage highlights the integration of smart tools and solutions and looks at current advances in monitoring industrial and environmental processes that can assist in making significant progress in process design for the effective control of pollution and waste management.

Advanced Marine Structures

by Srinivasan Chandrasekaran

Due in part to a growing demand for offshore oil and gas exploration, the development of marine structures that initially started onshore is now moving into deeper offshore areas. Designers are discovering a need to revisit basic concepts as they anticipate the response behavior of marine structures to increased water depths. Providing a sim

Advanced Materials Characterization: Basic Principles, Novel Applications, and Future Directions (Advanced Materials Processing and Manufacturing)

by Ch Sateesh Kumar M. Muralidhar Singh Ram Krishna

The book covers various methods of characterization of advanced materials commonly used in engineering including understanding of the working principle and applicability of devices. It explores the techniques implemented for advanced materials like superalloys, thin films, powders, nanocomposites, polymers, shape memory alloys, high entropy alloys, and so on. Major instruments covered include X-ray diffraction, near-field scanning optical microscopy Raman, X-ray photospectroscopy, ultraviolet-visible-near-infrared spectrosphotometer, Fourier-transform infrared spectroscopy, differential scanning calorimeter, profilometer, and thermogravimetric analysis. Features: Covers material characterization techniques and the development of advanced characterization technology Includes multiple length scale characterization approaches for a large variety of materials, from nano- to micron-scale, as well as their constraints Discusses advanced material characterization technology in the microstructural and property characterization fields Reviews both practical and theoretical explanations of approaches for characterizing microstructure and properties Offers fundamentals, basic instrumentation details, experimental approaches, analyses, and applications with case studies This book is aimed at graduate students and researchers in materials science and engineering.

Advanced Materials Modelling for Mechanical, Medical and Biological Applications (Advanced Structured Materials #155)

by Holm Altenbach Victor A. Eremeyev Alexander Galybin Andrey Vasiliev

The book is devoted to the 70th birthday of Prof. Sergey M. Aizikovich, which will celebrated on August 2nd 2021. His scientific interests are related to the following topics: Mechanics of contact interactions, Functionally graded materials, Mechanics of fracture, Integral equations of mathematical physics, Inverse problems of the theory of elasticity, and Applications of elasticity to biological and medical problems of mechanics of materials. The papers, collected in the book, are contributions of authors from 10 countries.

Advanced Materials Modelling for Structures: With Multi-scale Effects Or Under Multi-field Actions (Advanced Structured Materials #19)

by Holm Altenbach Serge Kruch

This volume presents the major outcome of the IUTAM symposium on "Advanced Materials Modeling for Structures". It discusses advances in high temperature materials research, and also to provides a discussion the new horizon of this fundamental field of applied mechanics. The topics cover a large domain of research but place a particular emphasis on multiscale approaches at several length scales applied to non linear and heterogeneous materials. Discussions of new approaches are emphasised from various related disciplines, including metal physics, micromechanics, mathematical and computational mechanics.

Advanced Materials and Components for 5G and Beyond (Springer Series in Materials Science #327)

by Colin Tong

This book provides a comprehensive introduction to the current status and future trends of materials and component design for fifth-generation (5G) wireless communications and beyond. Necessitated by rapidly increasing numbers of mobile devices and data volumes, and acting as a driving force for innovation in information technology, 5G networks are broadly characterized by ubiquitous connectivity, extremely low latency, and very high-speed data transfer. Such capabilities are facilitated by nanoscale and massive multi-input multi-output (MIMO) with extreme base station and device densities, as well as unprecedented numbers of antennas. This book covers semiconductor solutions for 5G electronics, design and performance enhancement for 5G antennas, high frequency PCB materials and design requirements, materials for high frequency filters, EMI shielding materials and absorbers for 5G systems, thermal management materials and components, and protective packaging and sealing materials for 5G devices. It explores fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications of 5G-and-beyond wireless communications. Future challenges and potential trends of 5G-and-beyond applications and related materials technologies are also addressed. Throughout this book, illustrations clarify core concepts, techniques, and processes. At the end of each chapter, references serve as a gateway to the primary literature in the field. This book is essential reading for today’s students, scientists, engineers and professionals who want to understand the current status and future trends in materials advancement and component design in 5G and beyond, and acquire skills for selecting and using materials and 5G component design that takes economic and regulatory aspects into account.

Advanced Materials and Manufacturing Techniques for Biomedical Applications (Advances In Manufacturing, Design And Computational Intelligence Techniques Ser.)

by Manoj Gupta Ashwani Kumar Arbind Prasad

ADVANCED MATERIALS and MANUFACTURING TECHNIQUES for BIOMEDICAL APPLICATIONS The book provides essential knowledge for the synthesis of biomedical products, development, nanomaterial properties, fabrication processes, and design techniques for different applications, as well as process design and optimization. In origin, biomaterials can come from nature or be synthesized in the laboratory with a variety of approaches that use metals, polymers, ceramic, or composite materials. They are often used or adapted for various biomedical applications. Biomaterials are commonly used in scaffolds, orthopedic, wound healing, fracture fixation, surgical sutures, artificial organ developments, pins and screws to stabilize fractures, surgical mesh, breast implants, artificial ligaments and tendons, and drug delivery systems. The sixteen chapters in Advanced Materials and Manufacturing Techniques in Biomedical Applications cover the synthesis, processing, design, manufacturing, and characterization of advanced materials; self-healing, bioinspired, nature-resourced, nanobiomaterials for biomedical applications; and manufacturing techniques such as rapid prototyping, additive manufacturing, etc. Audience The book is for engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing techniques. It is also appropriate for upper-level undergraduate and graduate students.

Advanced Materials and Sustainability in Civil Engineering (SpringerBriefs in Applied Sciences and Technology)

by Kiran Kumar Poloju

This book discusses the detailed concepts of concrete and its development with pros and cons. Besides, the significance of various industrial wastes as partial replacements with concrete ingredients such as cement and aggregates are discussed. The creation of cement contributes to around 7% of carbon emissions into the atmosphere leading to greenhouse effect and global warming. Similarly, the wastes generated from various industries such as thermal, steel, ceramic, marble, paper and etc. shows the impact on atmosphere and leads to air pollution and land pollution. Thus, it is essential to focus on these wastes to use them in a profitable manner without compromising the current needs. This book discusses a few examples on studies of using various industry wastes as partial replacement of cement in concrete​

Advanced Materials and Techniques for Biosensors and Bioanalytical Applications

by Pranab Goswami

Bioanalytical science and its technological subdomain, biosensors, are ever-evolving subjects, striving for rapid improvement in terms of performance and expanding the target range to meet the vast societal and market demands. The key performance factors for a biosensor that drive the research are selectivity, sensitivity, response time, accuracy, and reproducibility, with additional requirements of its portability and inexpensive nature. These performance factors are largely governed by the materials and techniques being used in these bioanalytical platforms. The selection of materials to meet these requirements is critical, as their interaction or involvement with the biological recognition elements should initiate or improve these performance factors. The technique discussed primarily applies to transducers involved in converting a biochemical signal to optical or electrical signals. Over the years, the emergence of novel materials and techniques has drastically improved the performance of these bioanalytical systems, enabling them to expand their analytical horizon. These advanced materials and techniques are central to modern bioanalytical and biosensor research. Advanced Materials and Techniques for Biosensors and Bioanalytical Applications provides a comprehensive review of the subject, including a knowledge platform for both academics and researchers. Considering biosensors as a central theme to this book, an outline on this subject with background principles has been included, with a scope of extending the utility of the book to coursework in graduate and postgraduate schools. Features: • Basic principles on different classes of biosensors, recent advances and applications • Smart materials for biosensors and other rapid, portable detection devices • Metal nanoparticles and nanocrystals for analytical applications • Carbon-based nanoparticles and quantum dots for sensing applications • Nanozymes as potential catalysts for sensing applications • Bioelectrochemiluminescence and photoelectrochemical-based biosensors • Paper electronics and paper-based biosensors • Microbial biosensors: artificial intelligence, genetic engineering, and synthetic biology • Biofuel cells as a signal transduction platform • FET-based biosensors, including ISFET and BioFET This book serves as a reference for scientific investigators and a textbook for a graduate-level course in biosensors and advanced bioanalytical techniques.

Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators (NATO Science for Peace and Security Series B: Physics and Biophysics)

by Arthur Dideikin Eric Garfunkel Evgeni Gusev

The main goal of this book is to review recent progress and current status of MEMS/NEMS technologies and devices. Several important areas are discussed: history of research in the field, device physics, examples of sucessful applications, sensors, materials and processing aspects. The authors who have contributed to the book represent a diverse group of leading scientists from academic, industrial and governmental labs worldwide who bring a broad array of backgrounds such as device physics, technologists, electrical and mechanical engineering, surface chemistry and materials science). The contributions to this book are accessible to both expert scientists and engineers who need to keep up with leading edge research, and newcomers to the field who wish to learn more about the exciting basic and applied research issues relevant to micromechanical devices and technologies.

Advanced Materials and Technologies for Wastewater Treatment (Emerging Materials and Technologies)

by Sreedevi Upadhyayula Amita Chaudhary

Advanced Materials and Technologies for Wastewater Treatment discusses the methods and technologies of physical, chemical, biological, and thermo-catalytic treatment techniques. It includes the treatment of waste generated by municipal, agro-industry, and other industries including chemical, biomedical, pharmaceutical, textile, and other sectors. FEATURES Covers implementation of advanced water and wastewater treatment techniques, with a focus on pollutant or pathogen removal Includes qualitative and quantitative analyses Focuses on physical, chemical, and biological treatment technologies Discusses the advancements of materials and technologies applicable to both potable water and wastewater from industrial and municipal sources Explores future challenges and viable solutions This book is aimed at chemical and environmental engineers and researchers seeking a thorough treatment of innovative water treatment materials and techniques for practical applications.

Advanced Materials for Batteries: Advantage, Disadvantage, and Future Applications

by Dinesh Kumar Rekha Sharma Sapna Nehra

The rise of renewable energy responds to global warming, necessitating reliable storage like batteries. Though frequent use can affect their lifespan, these have become smaller, simpler, and more adaptable. Recent technological progress has improved batteries' longevity and efficiency, with costs dropping due to mass production. This book examines different battery types, their evolution, and the cutting-edge materials enhancing their performance, particularly focusing on metal oxides in various battery technologies.Exploring advanced materials for batteries is not just a theoretical exercise but a practical journey into the future of energy. This book is an essential guide, tracing the evolution from early battery technology to the latest innovations and equipping researchers, engineers, and students with the practical knowledge to drive the next wave of sustainable energy solutions.Key Features:· Provides a comprehensive resource for academics, researchers, and engineers in energy storage, with detailed insights into various battery types.· Discusses advanced materials for smart and small batteries.· Delves into cutting-edge materials designed for compact and efficient batteries.· Offers a visionary outlook on the evolution of battery technology and traces historical advances alongside the latest breakthroughs in battery science and future perspectives.This book serves as a beacon, bridging historical milestones with future goals. It thoroughly explores materials, including lithium-ion and sodium-ion, in a manner accessible to everyone. It lays a robust groundwork for innovators in energy storage, steering us towards a more sustainable tomorrow. This work informs and connects readers to the evolving narrative of battery technology.

Advanced Materials for Biomedical Applications (Advances in Manufacturing, Design and Computational Intelligence Techniques)

by Ashwani Kumar Avinash Kumar Yatika Gori Chandan Swaroop Meena

The text discusses synthesis, processing, design, simulation and characterization of biomaterials for biomedical applications. It synergizes exploration related to various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling. It further presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. It will serve as an ideal reference text for senior undergraduate and graduate students, and academic researchers in fields including biomedical engineering, mechanical engineering, materials science, ergonomics, and human factors. The book Employs a problem-solution approach, where, in each chapter, a specific biomedical engineering problem is raised and its numerical, and experimental solutions are presented. Covers recent developments in biomaterials such as OPMF/KGG bio composites, PEEK-based biomaterials, PF/KGG biocomposites, oil palm mesocarp Fibre/KGG biocomposites, and polymeric resorbable materials for orthopedic, dentistry and shoulder arthroplasty applications. Discusses mechanical performance and corrosive analysis of biomaterials for biomedical applications in detail. Presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. Presents biodegradable polymers for various biomedical applications over the last decade owing to their non-corrosion in the body, biocompatibility and superior strength in growing state. Synergizes exploration related to the various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling.

Advanced Materials for Biomedical Applications: Development and Processing (Biomedical Materials for Multi-functional Applications)

by Vivek Sheel Rajput Jasdeep Bhinder

This book provides an insight into the basic fundamentals of the biomaterials used for the biomedical applications, their development and processing techniques. Advanced materials are significantly utilized for the biomedical applications ranging from dental devices to cancer treatment owing to their higher biocompatibility and better interaction with tissues. This book covers the various topics that include basic biocompatibility phenomena, insight to materials science, class of different advanced materials as a biomaterials, development and processing techniques, design and analysis of the developed advanced materials, investigation of its properties and major applications. Recent information regarding the development techniques and methods for improving the properties of the advanced materials in the field of biomedical applications is highlighted in detail. The textbook offers clear explanation of the text in the chapters with self-explanatory figures and tables. It demonstrates the novel methods, opportunities and ideas for developing biomaterials in the field of biomedical applications. It also includes critical review study of the developed advanced materials for biomedical applications in a new summarized form. The inclusion of the discussions on hybrid polymer-based composites and self-healing composite materials offers a special feature in the textbook. It features a thorough overview of the simulation aspect in the biomedical applications. The book features at least 50% of its references from last three–four years’ work in the field of biomaterials and biomedical. The book content adds to the redundancy in the literature work related to biomedical and biomaterials.This book is a valuable resource for academicians, students and scholars from science and engineering background having interest in biomaterials. It is helpful to the biomedical engineering group especially in countries or location where they don’t have access to the major journals.

Advanced Materials for Clean Energy

by Qiang Xu Tetsuhiko Kobayashi

Research for clean energy is booming, driven by the rapid depletion of fossil fuels and growing environmental concerns as well as the increasing growth of mobile electronic devices. Consequently, various research fields have focused on the development of high-performance materials for alternative energy technologies.Advanced Materials for Clean Ene

Refine Search

Showing 2,476 through 2,500 of 84,587 results