Browse Results

Showing 30,326 through 30,350 of 84,378 results

Genome Editing and Biological Weapons: Assessing the Risk of Misuse

by Katherine Paris

This monograph introduces current genome editing technologies—clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems, transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs)—and provides an assessment of the risk of misuse of these technologies based on the following parameters: accessibility, ease of misuse, magnitude of potential harm, and imminence of potential misuse. The findings from this assessment are applied to analyze and evaluate the threat posed by the intentional misuse of genome editing technologies to develop biological weapons. Furthermore, the book discusses the implications of misuse for different applications of genome editing, such as making existing pathogens more dangerous, modifying the human microbiome, weaponizing gene drives, engineering super soldiers, and augmenting the general population to confer economic advantages. Technologies that enable genome editing with programmable nucleases—including CRISPR, TALEN, and ZFN—allow for the precise genetic modification of organisms and cultured cells. While these technologies are used for a variety of beneficial applications, intelligence and defense experts have raised concerns that genome editing technologies, especially CRISPR, could be misused to develop new and improved biological weapons. Furthermore, experts worry that the number and type of actors who could potentially misuse genome editing is dramatically increasing given the democratization of biology, which is allowing biology to become more accessible to everyone including nonexperts. The book provides a comprehensive assessment of how feasible it is for users with different levels of knowledge and skill to acquire and then to apply the technologies to develop a biological weapon. It also provides an assessment of governability and a tailored set of recommendations that address security concerns. These recommendations are sensitive to the cost-benefit trade-off of regulating genome editing technologies. The book targets researchers as well as intelligence analysts, defense and security personnel, and policymakers.

Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery

by Krishnarao Appasani

Recent advances in genome editing tools using endonucleases such as TALENs, ZFNs, and CRISPRs, combined with genomic engineering technologies, have opened up a wide range of opportunities from applications in the basic sciences and disease biology research, to the potential for clinical applications and the development of new diagnostic tools. This complete guide to endonuclease-based genomic engineering gives readers a thorough understanding of this rapidly expanding field. Chapters cover the discovery, basic science, and application of these techniques, focusing particularly on their potential relevance to the treatment of cancer, and cardiovascular and immunological disease. The final section discusses the legal and ethical issues which accompany the technology. Providing authoritative coverage of the potential that genome editing and engineering have, this is an ideal reference for researchers and graduate students and those working in the biotechnology and pharmaceutical industries, as well as in a clinical setting.

Genome Editing and Global Food Security: Molecular Engineering Technologies for Sustainable Agriculture (Earthscan Food and Agriculture)

by Zeba Khan Durre Shahwar Yasmin Heikal

With the rapid increase in the global population and changing climatic impacts on agriculture, this book demonstrates how genome editing will be an indispensable technique to overcome ongoing and prospective agricultural challenges. This book examines the role of genome editing in improving crop yields and contributing to global food security. It summarizes a range of genome editing techniques and discusses the roles they can play in producing a new generation of high-yielding, climate-ready crops. This includes site-specific nucleases, precision genome engineering, clustered regularly interspaced short palindromic repeats, and bioinformatics. It showcases how these gene editing techniques can tailor plants to not only increase yield-related traits but to also make them better suited to their environment and to be resistant to pests and extreme climatic events, such as droughts. The book also examines genome editing regulations and policies, the commercialization of genome-edited crops, and biosafety and biosecurity concerns. Overall, this book reveals and showcases how genome editing can improve crop resilience and production to address current and future agricultural challenges and alleviation of global food security concerns. This book will be of great interest to students and scholars of agricultural science, crop and plant science, genome editing, sustainable agriculture, biotechnology, and food security.

Genome Editing for Crop Improvement: Theory and Methodology

by Shri Mohan Jain Jameel M. Al-Khayri Muhammad N. Sattar Sudhir K. Sopory

Genome editing offers a powerful tool to significantly accelerate crop-breeding programs in order to develop new and improved varieties. It allows precise modification of an organism's DNA sequence, often by creating targeted double-strand breaks at specific locations. The CRISPR-Cas system has emerged as the preferred method of gene editing and offers a powerful technology for crop improvement. The use of CRISPR in plant research has led to significant improvements in crop performance in terms of yield, nutrition, stress tolerance and resistance against agricultural pests and diseases. This book explores the cutting-edge field of genome editing, its applications and potential to revolutionize the genetic improvement of crops. It includes: Foundational concepts and historical context of genome editing (GE). Structure and mechanisms of various genome editing techniques. Application of GE for trait improvements in plants. Regulatory, biosafety, and ethical considerations. This is a valuable resource for researchers in crop genetic improvement, graduate and postgraduate students in molecular biology and biotechnology programs, and professionals in the field.

Genome Editing in Animals

by Izuho Hatada

This volume details protocols that can be used for generation of knockout animals. Chapters guide the reader through basic protocols for three genome editing technologies, target design tools, and specific protocols for each animal. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Genome Editing in Animals: Methods and Protocols aims to ensure successful results in the further study of this vital field.

Genome Editing in Animals: Methods and Protocols (Methods in Molecular Biology #2637)

by Izuho Hatada

This second edition provides new and updated protocols that can be used for generation of knockout animals. Chapters guide the reader through basic protocols for three genome editing technologies, target design tools, and specific protocols for each animal. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Genome Editing in Animals: Methods and Protocols, Second Edition aims to be a useful practical guide to researches to help further their study in this field.

Genome Editing in Biomedical Sciences (Advances in Experimental Medicine and Biology #1429)

by Geraldo A. Passos

This volume focuses on applying the Crispr system in editing the genome of human cells (in vitro and in vivo) and model organisms used in biomedical research. With the advent of Crispr technology, genome editing soon became a procedure of great interest to laboratories worldwide due to its relative ease and accuracy. In biomedical sciences, genome editing by Crispr has already enabled the development of new experimental model systems. In medicine, therapeutic alternatives for the genetic "correction" of diseases have already begun to appear. Therefore, the book's purpose is to bring in a single volume, chapters that show the scientific community in biomedicine, medicine, human genetics, oncology, virology, and parasitology, among others, the advances in genomic editing. In a chapter dedicated to the ethical aspects of human genomic editing, we also address what we can and should do with this (bio)technology. The book chapters were written by productive researchers specializing in Crispr genome editing. The chapters cover the concept of Crispr and genome editing and how to use this new methodology in biomedical research and medicine, among other aspects, including the ethical controversy around its use in humans. The writing of the chapters keeps a specialized language intelligible enough for those who want to introduce themselves to the subject.

Genome Editing in Cardiovascular and Metabolic Diseases (Advances in Experimental Medicine and Biology #1396)

by Junjie Xiao

This book provides the latest research progress on genome editing in cardiovascular and metabolic diseases and includes bioinformatics research methodology of genome editing. Genome editing is a genetic engineering technique precisely modified specific target genes of organism genome, which has been applied to basic theoretical research and production applications from plants and animals to gene therapy of human beings. Cardiovascular and metabolic diseases have become major factors affecting human health worldwide. This book contains information about bioinformatics, genome editing in cardiovascular diseases, genome editing in metabolic diseases and therapeutic effects. It will be useful for biologist, cardiologist, cardiovascular surgeons, endocrinologist, internists, nurses, undergraduate and graduate students in medicine and cell biology and others interested in cardiovascular and metabolic medicine.

Genome Editing in Drug Discovery

by Sumit Deswal Marcello Maresca

GENOME EDITING IN DRUG DISCOVERY A practical guide for researchers and professionals applying genome editing techniques to drug discovery In Genome Editing in Drug Discovery, a team of distinguished biologists delivers a comprehensive exploration of genome editing in the drug discovery process, with coverage of the technology’s history, current issues and techniques, and future perspectives and research directions. The book discusses techniques for disease modeling, target identification with CRISPR, safety studies, therapeutic editing, and intellectual property issues. The safety and efficacy of drugs and new target discovery, as well as next-generation therapeutics are also presented. Offering practical suggestions for practitioners and academicians involved in drug discovery, Genome Editing in Drug Discovery is a fulsome treatment of a technology that has become part of nearly every early step in the drug discovery pipeline. Selected contributions also include: A thorough introduction to the applications of CRISPRi and CRISPRa in drug discovery Comprehensive explorations of genome-editing applications in stem cell engineering and regenerative medicine Practical discussions of the safety aspects of genome editing with respect to immunogenicity and the specificity of CRISPR-Cas9 gene editing In-depth examinations of critical socio-economic and bioethical challenges in the CRISPR-Cas9 patent landscape Perfect for academic researchers and professionals in the biotech and pharmaceutical industries, Genome Editing in Drug Discovery will also earn a place in the libraries of medicinal chemists, biochemists, and molecular biologists.

Genome Editing in Plants: Principles and Applications

by Om Prakash Gupta, Suhas Gorakh Karkute

Genome Editing in Plants: Principles and Applications addresses the information of genome editing starting from principles and historical aspects to the latest advancements in the field. As genome-editing technology has emerged as promising and cutting edge, researchers around the world have started producing original research outputs, which have significantly improved our current understanding and potential of this technology. The initial chapters of this book describe different genome-editing tools as well as their principles and applications. Other chapters are dedicated to the present status and future applications of genome-editing techniques in various crop improvement programmes. Some of the advanced applications of CRISPR/Cas tools, such as base editing and RNA detection, along with regulatory aspects of genome-edited crops are described in detail. This book serves as a valuable resource to researchers in the field of crop improvement; graduate and postgraduate students engaged in plant molecular biology and biotechnology; academicians; and policy makers. Key Features: Addresses topics associated with historical development and principles of genome-editing technology Addresses basic mechanisms operating under each genome-editing technology Addresses its application in plants to design crops as per the current and future demands Addresses the regulatory mechanisms of genome-edited crops

Genome Editing: Current Technology Advances and Applications for Crop Improvement

by Shabir Hussain Wani Goetz Hensel

Over the last few decades, various techniques have been developed to alter the properties of plants and animals. While the targeted transfer of recombinant DNA into crop plants remains a valuable tool to achieve a desirable breeding outcome, integration of transgenes into the host genome has been random, which in part, leads to reduced acceptance of GMOs by the general population in some parts of the world. Likewise, methods of induced mutagenesis, such as TILLING, have the disadvantage that many mutations are induced per plant, which has to be removed again by expensive backcrossing. Advances in genome sequencing have provided more and more information on differences between susceptible and resistant varieties, which can now be directly targeted and modified using CRISPR/Cas9 technology. By selecting specific gRNAs occurrence of off-target modifications are comparatively low. ZFNs and TALENs- based approaches required re-engineering a new set of assembled polypeptides for every new target site for each experiment. The difficulty in cloning and protein engineering prevented these tools from being broadly adopted by the scientific community. Compared to these technologies, designing the CRISPR toolbox is much simpler and more flexible. CRISPR/Cas9 is versatile, less expensive and highly efficient. It has become the most widely used technology for genome editing in many organisms.Since its inception as a powerful genome-editing tool in late 2012, this breakthrough technology has completely changed how science is performed. The first few chapters in this book introduce the basic concept, design and implementation of CRISPR/Cas9 for different plant systems. They are followed by in-depth discussions on the legal and bio-safety issues accompanying commercialization and patenting of this emerging technology. Lastly, this book covers emerging areas of new tools and potential applications. We believe readers, novice and expert alike, will benefit from this all-in-one resource on genome editing for crop improvement.Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Genome Engineering for Crop Improvement

by Santosh Kumar Upadhyay

In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering—enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins. Genome Engineering for Crop Improvement provides an up-to-date view of the use of genome editing for crop bio-fortification, improved bioavailability of minerals and nutrients, and enhanced hypo-allergenicity and hypo-immunogenicity. This volume examines a diversity of important topics including mineral and nutrient localization, metabolic engineering of carotenoids and flavonoids, genome engineering of zero calorie potatoes and allergen-free grains, engineering for stress resistance in crop plants, and more. Helping readers deepen their knowledge of the application of genome engineering in crop improvement, this book: Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement is an essential resource for academics, scientists, researchers, agriculturalists, and students of plant molecular biology, system biology, plant biotechnology, and functional genomics.

Genome Engineering for Crop Improvement (Concepts and Strategies in Plant Sciences)

by Bidyut Kumar Sarmah Basanta Kumar Borah

This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement.The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.

Genome Generation

by Elizabeth Finkel

The year 2001 marked more than just the beginning of Stanley Kubrick's Space Odyssey, it marked the beginning of the genome era. That was the year scientists first read the 3 billion letters of DNA that make up the human genome. This was followed by a veritable Noah's Ark of genomes—sponges and worms, dogs and cows, rice and wheat, chimps and elephants—180 creatures aboard so far. So what have we learned from all this? How has it changed the way we practise medicine, grow crops and breed livestock? What have we learned about evolution? These are the questions science writer and molecular biologist Elizabeth Finkel asked herself four years ago. To find the answers she travelled the science frontier from Botswana to Boston, from Warracknabeal to Mexico and tracked down scientists working in the field. Their stories, told here, paint the picture of what it means to be part of the genome generation. 'The Genome Generation is absolutely riveting. These tales from the frontier are a 'must read' for everyone who wishes to understand our past—the logic of evolution—or take a peep into our exciting future at the creation of 'super plants' through 'digital agriculture'.'—R.A. Mashelkar, CSIR Bhatnagar Fellow and India President, Global Research Alliance

Genome Instability

by Marco Muzi-Falconi Grant W Brown

This volume presents forty-two methods and protocols to analyze diverse aspects of genome instability. Chapters detail mutagenesis and repair, methods to quantify and analyze the properties of DNA double-strand breaks, profile replication, replication proteins strand-specifically, genome instability, fluorescence microscopic techniques, and genomic and proteomic approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Genome Instability: Methods and Protocols aims to provide a comprehensive resource for the discovery and analysis of the proteins and pathways that are critical for stable maintenance of the genome.

Genome Mapping and Genomics in Human and Non-Human Primates

by Sarah Williams-Blangero Chittaranjan Kole Ravindranath Duggirala Laura Almasy Solomon F.D. Paul

This book provides an introduction to the latest gene mapping techniques and their applications in biomedical research and evolutionary biology. It especially highlights the advances made in large-scale genomic sequencing. Results of studies that illustrate how the new approaches have improved our understanding of the genetic basis of complex phenotypes including multifactorial diseases (e. g. , cardiovascular disease, type 2 diabetes, and obesity), anatomic characteristics (e. g. , the craniofacial complex), and neurological and behavioral phenotypes (e. g. , human brain structure and nonhuman primate behavior) are presented. Topics covered include linkage and association methods, gene expression, copy number variation, next-generation sequencing, comparative genomics, population structure, and a discussion of the Human Genome Project. Further included are discussions of the use of statistical genetic and genetic epidemiologic techniques to decipher the genetic architecture of normal and disease-related complex phenotypes using data from both humans and non-human primates.

Genome Mapping and Genomics in Laboratory Animals

by Chittaranjan Kole Paul Denny

Mapping of animal genomes has generated huge databases and several new concepts and strategies, which are useful to elucidate origin, evolution and phylogeny. Genetic and physical maps of genomes further provide precise details on chromosomal location, function, expression and regulation of academically and economically important genes. The series Genome Mapping and Genomics in Animals provides comprehensive and up-to-date reviews on genomic research on a large variety of selected animal systems, contributed by leading scientists from around the world. Laboratory animals are those species that by accident of evolution, domestication and selective breeding are amenable to maintenance and study in a laboratory environment. Many of these species are studied as 'models' for the biology and pathology of humans. Laboratory animals included in this volume are sea-urchin, nematode worm, fruit fly, sea squirts, puffer fishes, medaka fish, African clawed frog, mouse and rat.

Genome Organization And Function In The Cell Nucleus

by Karsten Rippe

By way of its clear and logical structure, as well as abundant highresolution illustrations, this is a systematic survey of the players and pathways that control genome function in the mammalian cell nucleus. As such, this handbook and reference ties together recently gained knowledge from a variety of scientific disciplines and approaches, dissecting all major genomic events: transcription, replication, repair, recombination and chromosome segregation. A special emphasis is put on transcriptional control, including genome-wide interactions and non-coding RNAs, chromatin structure, epigenetics and nuclear organization. With its focus on fundamental mechanisms and the associated biomolecules, this will remain essential reading for years to come.

Genome Stability and Human Diseases

by Heinz-Peter Nasheuer

Since the establishment of the DNA structure researchers have been highly interested in the molecular basis of the inheritance of genes and of genetic disorders. Scientific investigations of the last two decades have shown that, in addition to oncogenic viruses and signalling pathways alterations, genomic instability is important in the development of cancer. This view is supported by the findings that aneuploidy, which results from chromosome instability, is one of the hallmarks of cancer cells. Chromosomal instability also underpins our fundamental principles of understanding tumourigenesis: It thought that cancer arises from the sequential acquisition of genetic alterations in specific genes. In this hypothesis, these rare genetic events represent rate-limiting 'bottlenecks' in the clonal evolution of a cancer, and pre-cancerous cells can evolve into neoplastic cells through the acquisition of somatic mutations. This book is written by international leading scientists in the field of genome stability. Chapters are devoted to genome stability and anti-cancer drug targets, histone modifications, chromatin factors, DNA repair, apoptosis and many other key areas of research. The chapters give insights into the newest development of the genome stability and human diseases and bring the current understanding of the mechanisms leading to chromosome instability and their potential for clinical impact to the reader.

Genome Stability: DNA Repair and Recombination

by James Haber

Genome Stability: DNA Repair and Recombination describes the various mechanisms of repairing DNA damage by recombination, most notably the repair of chromosomal breaks. The text presents a definitive history of the evolution of molecular models of DNA repair, emphasizing current research. The book introduces the central players in recombination. An overview of the four major pathways of homologous recombinational repair is followed by a description of the several mechanisms of nonhomologous end-joining. Designed as a textbook for advanced undergraduate and graduate students with a molecular biology and genetics background, researchers and practitioners, especially in cancer biology, will also appreciate the book as a reference.

Genome Visualization by Classic Methods in Light Microscopy (Methods in Visualization)

by Jean-Marie Exbrayat

Visualization of nucleic acids has become indispensable to studying cells, tissues, and organisms. Certain techniques even permit quantification of DNA and/or RNA distribution in tissues, but few current analytical books cover the numerous methods for DNA and RNA visualization. This book provides insight into several classic techniques, histologica

Genome and Genomics: From Archaea to Eukaryotes

by K. V. Chaitanya

This book provides a detailed and up-to-dated information on the genomes belonging to three major life forms on Earth – archaea, prokaryotes and eukaryotes. Each section describes about the genome of a specific group of organisms, such as viruses, archaea, bacteria, eukaryotes and organellar genomes. Individual chapters provide details of their organization, structure, evolution, sequencing strategies and functions. Further, this book discusses the technologies that are applied for genome sequencing; assembly, annotation and gene prediction. Other topics include the genomes of important model organisms, mitochondria genome of Neanderthal fossil, etc. This book also examines the evolution of chloroplast and mitochondria genomes by comparing with bacteria, addresses the diseases that occur in humans due to the mutations in mitochondrial genome, gene therapy and engineering of chloroplast and mitochondrial genomes. Lastly, it features an overview of the role of proteomics, exposomics, connectomics, metabolomics, and microbiomics. This book is a fascinating read for students, lecturers and researchers in the field of genetics, genomics, microbiology and life sciences.

Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing

by Veli Mäkinen Djamal Belazzougui Fabio Cunial Alexandru I. Tomescu

High-throughput sequencing has revolutionised the field of biological sequence analysis. Its application has enabled researchers to address important biological questions, often for the first time. This book provides an integrated presentation of the fundamental algorithms and data structures that power modern sequence analysis workflows. The topics covered range from the foundations of biological sequence analysis (alignments and hidden Markov models), to classical index structures (k-mer indexes, suffix arrays and suffix trees), Burrows-Wheeler indexes, graph algorithms and a number of advanced omics applications. The chapters feature numerous examples, algorithm visualisations, exercises and problems, each chosen to reflect the steps of large-scale sequencing projects, including read alignment, variant calling, haplotyping, fragment assembly, alignment-free genome comparison, transcript prediction and analysis of metagenomic samples. Each biological problem is accompanied by precise formulations, providing graduate students and researchers in bioinformatics and computer science with a powerful toolkit for the emerging applications of high-throughput sequencing.

Genome-Wide Association Studies

by Krishnarao Appasani Scherer, Stephen W. and Appasani, Krishnarao Visscher, Peter M. Stephen W. Scherer Peter M. Visscher

Over the last twenty years, genome-wide association studies (GWAS) have revealed a great deal about the genetic basis of a wide range of complex diseases and they will undoubtedly continue to have a broad impact as we move to an era of personalised medicine. This authoritative text, written by leaders and innovators from both academia and industry, covers the basic science as well as the clinical, biotechnological and pharmaceutical potential of these methods. With special emphasis given to highlighting pharmacogenomics and population genomics studies using next-generation technology approaches, this is the first book devoted to combining association studies with single nucleotide polymorphisms, copy number variants, haplotypes and expressed quantitative trait loci. A reliable guide for newcomers to the field as well as for experienced scientists, this is a unique resource for anyone interested in how the revolutionary power of genomics can be applied to solve problems in complex disease.

Genome-Wide Association Studies (Methods in Molecular Biology #2481)

by Davoud Torkamaneh François Belzile

This detailed collection explores genome-wide association studies (GWAS), which have revolutionized the investigation of complex traits over the past decade and have unveiled numerous useful genotype–phenotype associations in plants. The book describes the key concepts and methods underlying GWAS, including the genetic architecture underlying variation for phenotypic traits, the structure of genetic variation in plants, technologies for capturing genetic information, study designs, and the statistical models and bioinformatics tools used for data analysis. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of invaluable implementation advice that leads to the most fruitful research results. Authoritative and practical, Genome-Wide Association Studies serves as an extremely valuable resource for the plant research community by rendering GWAS analysis less challenging and more accessible to a broader group of users.

Refine Search

Showing 30,326 through 30,350 of 84,378 results