- Table View
- List View
Low Carbon Materials and Technologies for a Sustainable and Resilient Infrastructure: Select Proceedings of CBKR 2023 (Lecture Notes in Civil Engineering #440)
by Rathish Kumar Pancharathi Christopher K. Y. Leung J. M. Chandra KishenThis book presents select proceedings of the International Conference on Cement and Building Koncrete infrastructure for sustainability and Resilience (CBKR-2023). It discusses the latest technologies and innovative and non-conventional materials for sustainable built environment. The topics covered include alternate, sustainable, cost-effective, and smart materials and technologies. It also covers applications of artificial intelligence and machine learning in construction, MCDM techniques, performance-based design, and 3D printing technologies. The book is useful for researchers and professionals in the area of civil engineering and materials science.
Low Carbon Pathways for Growth in India (India Studies in Business and Economics)
by Rajat Kathuria Saon Ray Kuntala BandyopadhyayThis book explores ways in which India can negotiate the low carbon path up until 2030, when it is expected to be the largest economy after the US and China. It comprehensively reviews the low climate pathways for India and provides a guide to the pathways that the country can adopt. India’s population, energy demands and emissions will increase significantly, and the challenge is to restrict its CO2 emissions and walk the low carbon path. Through its Intended Nationally Determined Contributions (INDCs), India has pledged to reduce its emissions significantly.Addressing the question of which low carbon paths India can adhere to without compromising its growth, the book identifies the key factors that feed into existing models of climate change and discusses the cost of action versus inaction. It also examines key issues concerning India’s environment through the lens of the transport, industry and water sectors. The book concludes by looking at policy implications for low carbon growth in India.
Low-Complexity Arithmetic Circuit Design in Carbon Nanotube Field Effect Transistor Technology (Carbon Nanostructures)
by K. Sridharan B. Srinivasu Vikramkumar PudiThis book introduces readers to the emerging carbon nanotube field-effect transistor (CNTFET) technology, and examines the problem of designing efficient arithmetic circuits in CNTFET technology. Observing that CNTFETs make it possible to achieve two distinct threshold voltages merely by altering the diameter of the carbon nanotube used, the book begins by discussing the design of basic ternary logic elements. It then examines efficient CNTFET-based design of single and multiple ternary digit adders by judicious choice of unary operators in ternary logic, as well as the design of a ternary multiplier in CNTFET technology, and presents detailed simulation results in HSPICE. Lastly, the book outlines a procedure for automating the synthesis process and provides sample code in Python.
Low-Complexity Controllers for Time-Delay Systems
by Alexandre Seuret Hitay Özbay Catherine Bonnet Hugues MounierThis volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically infinite dimensional. However, they have very nice numerical properties from the point of reliable implementation. Therefore, such predictor-based controllers are considered as low complexity. This book includes new predictor-based design techniques, with several application examples.
Low-Cost Methods for Molecular Characterization of Mutant Plants
by Bradley J. Till Joanna Jankowicz-Cieslak Owen A. Huynh Mayada M. Beshir Robert G. Laport Bernhard J. HofingerThis book offers low-cost and rapid molecular assays for the characterization of mutant plant germplasm. Detailed protocols are provided for the desiccation of plant tissues; the extraction of high-quality DNA for downstream applications; the extraction of single-strand-specific nucleases for single nucleotide polymorphism; and small insertion/deletion discovery using standard agarose gel electrophoresis. The methods described can be applied in any laboratory equipped for basic molecular biology and do away with the need for expensive freezers and toxic organic compounds. With the appropriate validation of sample quality and longevity, they can provide sufficient DNA for a variety of molecular applications, such as marker studies and TILLING, at approximately one tenth of the cost per sample when compared to commercial kits.
Low-Dimensional and Nanostructured Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications (NanoScience and Technology)
by Hilmi Ünlü Norman J. M. Horing Jaroslaw DabowskiThis book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
Low-Dimensional Chalcohalide Nanomaterials: Energy Conversion and Sensor-Based Technologies (NanoScience and Technology)
by Krystian MistewiczThis book provides a deep insight into recent achievements in synthesis, investigation, and applications of the low-dimensional chalcohalide nanomaterials. The large number of interesting phenomena occur in these compounds, including ferroelectric, piezoelectric, pyroelectric, electrocaloric, Seebeck, photovoltaic, and ferroelectric-photovoltaic effects. Furthermore, the outstanding photoelectrochemical, photocatalytic, and piezocatalytic properties of the chalcohalide nanomaterials have been revealed. Since many chalcohalide semiconductors possess both photoactive and ferroelectric properties, they are recognized as photoferroelectrics. It presents an overview of fabrication of chalcohalide nanomaterials using different methods: mechanical milling of bulk crystals, liquid-phase exfoliation, vapor phase growth, hydro/solvothermal methods, synthesis under ultrasonic irradiation, microwave synthesis, laser/heat-induced crystallization, electrospinning, successive ionic layer adsorption and reaction. The strategies of the chalcohalide nanomaterials processing for construction of functional devices are presented.The book describes solution processing for thin films preparation, spin-coating deposition of polymer composites, solution casting, films deposition via drop-casting, high pressure compression of nanowires into the bulk samples, pressure assisted sintering, and electric field assisted alignment of nanowires. The applications of the chalcohalide nanomaterials for mechanical/thermal energy harvesting and energy storage are presented. Major challenges and emerging trends in fabrication, characterization, and future applications of low-dimensional chalcohalide nanomaterials are discussed. A wealth of information for scholars, graduate students, and engineers involved in research of nanomaterials.
Low-Dimensional Functional Materials
by Davron Matrasulov Reinhold Egger Khamdam RakhimovMaintaining and improving energy security is one of the biggest challenges worldwide. The NATO ARW conference in Tashkent, October 2012, was devoted to discussing visions and concepts that are currently discussed in different research fields. Leading scientists have written concise contributions to introduce the reader to this exciting topic. The present volume summarizes the discussions at the conference.
Low-Dimensional Magnetism
by A. N. Vasiliev O. S. Volkova E. A. Zvereva M. M. MarkinaLow-dimensional magnetism physics involves the search for new magnetic compounds and improving their characteristics to meet the needs of innovative technologies. A comprehensive overview of key materials, their formulation data and characteristics are detailed by the author. <P><P>Key selling features: Explores dominant mechanisms of magnetic interaction to determine the parameters of exchange interactions in new magnetic materials. Describes how magnetism and superconductivity not only compete, but also "help" each other. Details characteristics of key materials in the magnetic subsystem. Results of several internationally renowned research groups are included and cited. Suitable for a wide range of readers in physics, materials science, and chemistry interested in the problems of the structure of matter.
Low Dimensional Semiconductor Structures
by Norman J. Horing Hilmi ÜnlüStarting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included here. Recent research on optical studies of quantum dots and on the physical properties of one-dimensional quantum wires is also reported. Chapters on fabrication of nanowire - based nanogap devices by the dielectrophoretic assembly approach. The broad spectrum of research reported here incorporates chapters on nanoengineering and nanophysics. In its presentation of tutorial chapters as well as advanced research on nanostructures, this book is ideally suited to meet the needs of newcomers to the field as well as experienced researchers interested in viewing colleagues' recent advances.
Low-Dose Radiation Effects on Animals and Ecosystems: Long-Term Study on the Fukushima Nuclear Accident
by Manabu FukumotoThis open access book summarizes the latest scientific findings regarding the biological effects of the Fukushima Daiichi Nuclear Power Plant (FNPP) accident in 2011.Various cases of changes in animals and organisms have been reported since the FNPP accident. However, it is often unknown whether they are actually due to radiation, since the dose or dose-rate are not necessarily associated with the changes observed. This book brings together the works of radiation biologists and ecologists to provide reliable radioecology data and gives insight into future radioprotection.The book examines the environmental pollution and radiation exposure, and contains valuable data from abandoned livestock in the ex-evacuation zone and from wild animals including invertebrates and vertebrates, aqueous and terrestrial animals, and plants that are subjected to long-term exposure in the area still affected by radiation. It also analyzes dose evaluation, and offers new perspectives gained from the accident, as well as an overview for future studies to promote radioprotection of humans and the ecosystem.Since the biological impact of radiation is influenced by various factors, it is difficult to scientifically define the effects of low-dose/low-dose-rate radiation. However, the detailed research data presented can be combined with the latest scientific and technological advances, such as artificial intelligence, to provide new insights in the future.This book is a unique and valuable resource for researchers, professionals and anyone interested in the impact of exposure to radiation or contamination with radioactive materials.
Low Earth Orbit Satellite Design
by George Sebestyen Steve Fujikawa Nicholas Galassi Alex ChuchraIn recent decades, the number of satellites being built and launched into Earth’s orbit has grown immensely, alongside the field of space engineering itself. This book offers an in-depth guide to engineers and professionals seeking to understand the technologies behind Low Earth Orbit satellites.With access to special spreadsheets that provide the key equations and relationships needed for mastering spacecraft design, this book gives the growing crop of space engineers and professionals the tools and resources they need to prepare their own LEO satellite designs, which is especially useful for designers of small satellites such as those launched by universities. Each chapter breaks down the various mathematics and principles underlying current spacecraft software and hardware designs.
Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances
by Masood Ur Rehman Muhammad Ali JamshedLOW ELECTROMAGNETIC FIELD EXPOSURE WIRELESS DEVICES Comprehensive resource covering methods of designing energy efficient and low EMF wireless device techniques Supported with real case studies and recent advancements and laying the foundation for future advancements in the field, Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances describes both ways, i.e. hardware and software, in which the user-centric wireless communication devices can be designed to reduce the levels of EMF to limit the potential long-term effects of EMF on human health. The text covers state-of-the-art and advanced topics such as EMF exposure standards and rationale, EMF evaluation tools, radio resource allocation, energy conservation, energy harvesting, EMF-aware antenna designs, and MIMO, and highlights advancements in this exciting field to date. To aid reader comprehension, the text contains numerous tables, illustrations, and photographs. In Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances, readers can expect to find information on: Fundamentals and key practices, and mechanisms and assessment methods, of exposure to electromagnetic fields The role of the smartphone on the assessment of exposure from 5G and antenna design considerations and techniques for low SAR mobile handsets Numerical exposure assessments of communication systems at higher frequencies and age-dependent exposure estimation using numerical methods Reinforcement learning and device-to-device communication in minimizing EMF exposure and emission-aware uplink resource allocation scheme for non-orthogonal multiple access systems For wireless user equipment designers and hardware engineers, teachers in wireless communications, and postgraduate students in antennas for communication systems, Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances is a must-have resource, covering an important topic that is expected to only grow in significance as future technological developments are made.
Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces
by Petr ČárskY Roman ČURíSince the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. F
Low-Energy Ion Irradiation of Materials: Fundamentals and Application (Springer Series in Materials Science #324)
by Bernd RauschenbachThis book provides a comprehensive introduction to all aspects of low-energy ion–solid interaction from basic principles to advanced applications in materials science. It features a balanced and insightful approach to the fundamentals of the low-energy ion–solid surface interaction, focusing on relevant topics such as interaction potentials, kinetics of binary collisions, ion range, radiation damages, and sputtering. Additionally, the book incorporates key updates reflecting the latest relevant results of modern research on topics such as topography evolution and thin-film deposition under ion bombardment, ion beam figuring and smoothing, generation of nanostructures, and ion beam-controlled glancing angle deposition. Filling a gap of almost 20 years of relevant research activity, this book offers a wealth of information and up-to-date results for graduate students, academic researchers, and industrial scientists working in these areas.
Low Energy Neutrino-Nucleus Interactions at the Spallation Neutron Source (Springer Theses)
by Samuel HedgesThis thesis highlights the development and analysis of multiple neutrino detectors deployed to the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory as part of the COHERENT experiment. It includes a preliminary measurement of the neutrino-induced neutron cross section on lead, and analysis that led to the first inclusive electron-neutrino charged-current measurement on iodine. These results add to the small number of inelastic neutrino-nucleus cross sections measured in this energy range, which are useful for understanding supernova and solar neutrino detection sensitivity. Additionally, it discusses preliminary work for and design of COHERENT’s ton-scale NaI coherent elastic neutrino-nucleus scattering (CEvNS) detector, currently being deployed to the SNS. Finally, it includes information on a campaign to measure the nuclear recoil quenching factor of NaI using multiple crystals, attempting to resolve inconsistencies with existing measurements.
Low Energy Particle Accelerator-Based Technologies and Their Applications
by Vlado ValkovićLow Energy Particle Accelerator-Based Technologies and Their Applications describes types of low energy accelerators, presents some of the main manufacturers, illustrates some of the accelerator laboratories around the globe and shows examples of successful transfers of accelerators to needed laboratories. Key Features: Presents new trends and the state of the art in a field that's growing Provides an overview of numerous applications of such accelerators in medicine, industry, earth sciences, nuclear non-proliferation and oil Fills a gap, with the author drawing on his own experiences with transporting such relatively large machines from one lab to the other that require a tremendous amount of planning, technical and engineering efforts This is an essential reference for advanced students as well as for physicists, engineers and practitioners in accelerator science. About the Author Dr. Vladivoj (Vlado) Valković, a retired professor of physics, is a fellow of the American Physical Society and Institute of Physics (London). He has authored 22 books (from Trace Elements, Taylor & Francis, 1975, to Radioactivity in the Environment, Elsevier, 1st Edition 2001, 2nd Edition 2019), and more than 400 scientific and technical papers in the research areas of nuclear physics, applications of nuclear techniques to trace element analysis in biology, medicine and environmental research. He has lifelong experience in the study of nuclear reactions induced by 14 MeV neutrons. This research has been done through coordination and works on many national and international projects, including US-Croatia bilateral, NATO, IAEA, EU-FP5, FP6 and FP7 projects. Cover photo credit: 3SDH 1 MV Pelletron system with RF source and analysis endstation designed with the intended purpose of aiding in fusion research. It is capable of Ion Beam Analysis (IBA) techniques such as RBS, ERD, PIXE and NRA. Further detectors could be added to the endstation to allow for other techniques. Installed in Japan in 2014. Courtesy of National Electrostatics Corp.
Low Energy Photon Detection (Springer Theses)
by Tianyi GuoThis thesis showcases innovative new approaches aimed at advancing the next generation of long wave infrared (LWIR) light detectors and cameras. Detecting LWIR light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. The two approaches detailed within are designed to offer high detectivity, swift response times, and room temperature operation. The first involves harnessing the Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. The second entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, the graphene-based detectors are integrated with readout circuits to enable the development of a dense pixel focal plane which has strong potential for commercialization. The journey from novel material to device to functional camera presented here is essential reading for researchers in the field of photon detection.
Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB
by Gregory M. Noetscher Ara Nazarian Sergey N. MakarovProvides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Low Frequency Radio Astronomy and the LOFAR Observatory: Lectures from the Third LOFAR Data Processing School (Astrophysics and Space Science Library #426)
by George Heald John McKean Roberto PizzoThis book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques).
Low Frequency Radio Observations of Galaxy Clusters and Groups (Springer Theses)
by Thérèse CantwellThis book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
Low-Frequency Waves in Space Plasmas
by Andreas Keiling Dong-Hun Lee Valery NakariakovLow-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands.
The Low GI Handbook: The New Glucose Revolution Guide to the Long-Term Health Benefits of Low GI Eating
by Dr Jennie Brand-Miller Stephen Colagiuri Kaye Foster-Powell B.SC., M. Nutri. & Diet Dr Thomas M. WoleverWith over 1 million copies sold of the three previous editions, The New Glucose Revolution is the go-to book for all things GI. Now in its fourth edition, The New Glucose Revolution is completely revised and updated, expanding on the most recent scientific findings related to GI and health. It includes new chapters dedicated to pre-diabetes, pregnancy, and heart health; easy and delicious recipes; weekly low-GI menu ideas; and the GI values for more than 900 different foods and drinks, plus saturated fat and carbohydrate contents listed. On the heels of Dr. David Jenkins' groundbreaking GI study (one of the largest and longest to assess the impact of foods with a low GI), the time is right to adopt and maintain a low-GI lifestyle.If you want to lose weight; manage your diabetes; and improve your blood glucose levels, cardiovascular health, and sense of well-being, this is the book for you.
Low-Grade and Nonconventional Sources of Manganese (Routledge Revivals)
by David B. BrookesThis book, first published in 1966, reports the results of a pilot study devoted to understanding the middle-term resource situation for one metal – manganese. Two factors bring the different parts of the manganese supply-demand picture together, one economic and the other political, both of which are examined in detail in this report. Low-Grade and Nonconventional Sources of Manganese will be of interest to students of environmental studies.
Low-Grade Heat Harvesting: Materials, Devices, and Technologies
by Xiaogang ZhangLow-Grade Heat Harvesting Harvest a vast untapped reservoir of energy with this essential resource The search for widely available, sustainable energy sources is arguably the defining challenge of the current era. Low-Grade Heat, a term referring to temperatures under 100 degrees Celsius, is an incredibly abundant form of energy in the natural world, but not one which existing sustainable technologies have been able to harvest efficiently and sustainably. The ubiquity of this energy, however, gives it huge potential to address the looming energy crisis. Low-Grade Heat Harvesting surveys existing technologies for utilizing low-grade heat and the related techniques for storing and converting low-grade heat energy. Beginning with the basic thermodynamic principles underlying low-grade heat, it proceeds to work systematically through the major categories of low-grade heat harvesting device, offering a comprehensive overview of the state of the field. Low-Grade Heat Harvesting readers will also find: A focus on emerging technologies Detailed discussion of thermoelectric devices for low-grade heat harvesting, liquid-based thermocells for heat-to-current conversion, and many more Authored by an acknowledged expert in energy storage and conversion Low-Grade Heat Harvesting is ideal for materials scientists, electrochemists, electronics engineers, and anyone else working to address energy needs.