Browse Results

Showing 46,351 through 46,375 of 76,666 results

Molecular Physical Chemistry For Engineers

by John T. Yates J. Karl Johnson

Offering a distinct emphasis on the behavior of matter from the molecular viewpoint, this book is designed for a one-semester undergraduate course on physical chemistry for engineers and materials scientists. After a brief introductory review of the basic thermodynamic foundations, the book covers three core areas of physical chemistry -- quantum chemistry, statistical mechanics, and kinetics. A final chapter provides case histories that use molecular modeling to solve engineering problems. The book includes a broad range of exercises throughout, and an Instructor's Manual is available for adopting professors.

Molecular Physiology and Evolution of Insect Digestive Systems (Entomology in Focus #7)

by Walter R. Terra Clelia Ferreira Carlos P. Silva

This book provides a unique blend of data on insect life spans, physiology, enzymology and other molecular features associated with digestion and nutrient absorption to enrich the knowledge on insects and to disclose putative molecular targets for the development of new insect control technologies and for improving insect raising procedures to be used as food and feed. With this aim, the book overviews the types of diets consumed by insects, describing their chemical components demanding digestion and discusses the evolutionary selective pressures on insects associated with feeding. Digestive enzymes are classified and detailed according to their activity on substrates and their evolutionary protein families. The technical details on how to obtain reliable enzymological parameters are discussed. The book reviews the structural changes in enzymes associated with the adaptation of insects to new diets and in avoiding natural plant inhibitors. Midgut features that enhance digestive and nutrient absorption efficiency and their underlying molecular mechanisms are described regarding insects pertaining to key points in evolution. Evolutionary trends of the mechanisms of digestion and nutrient absorption are discussed.

Molecular Plant Abiotic Stress: Biology and Biotechnology

by Aryadeep Roychoudhury Dr Durgesh Kumar Tripathi

A close examination of current research on abiotic stresses in various plant species The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: Covers a wide range of abiotic stresses in multiple plant species Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species Compiles the most recent research and up-to-date data on stress tolerance Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances Written and edited by prominent scientists and researchers from across the globe Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.

Molecular Plant Breeding

by Yunbi Xu

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.

Molecular Plant Immunity

by Guido Sessa

Molecular Plant Immunity provides an integrated look at both well-established and emerging concepts in plant disease resistance providing the most current information on this important vitally important topic within plant biology. Understanding the molecular basis of the plant immune system has implications on the development of new varieties of sustainable crops, understanding the challenges plant life will face in changing environments, as well as providing a window into immune function that could have translational appeal to human medicine.Molecular Plant Immunity opens with chapters reviewing how the first line of plant immune response is activated followed by chapters looking at the molecular mechanisms that allow fungi, bacteria, and oomycetes to circumvent those defenses. Plant resistance proteins, which provide the second line of plant immune defense, are then covered followed by chapters on the role of hormones in immunity and the mechanisms that modulate specific interaction between plants and viruses. The final chapters look at model plant-pathogen systems to review interaction between plants and fungal, bacterial, and viral pathogens. Written by a leading team of international experts, Molecular Plant Immunity will provide a needed resource to diverse research community investigated plant immunity.

Molecular Plant Pathology

by Matthew Dickinson James Beynon

For the past century, it has been known that plants possess genetically inherited resistance mechanisms to combat phytopathogenic fungi, bacteria and viruses, and that the relationship between pathogens and host plants is highly specialized and complex. As techniques of molecular biology have developed over the past 25 years, our understanding of the molecular basis of these relationships has advanced significantly.Molecular Plant Pathology, the fourth volume in the Annual Plant Reviews series, discusses the ways by which molecular plant pathology can be exploited to control disease and thereby maximize crop yield. It covers the three main areas of plant pathology: how pathogens cause disease; (the molecular signaling that takes place between plant and pathogen); how plants resist disease (what is known about resistance genes, apoptosis, and systemic-acquired resistance); and how molecular plant pathology can be exploited to control disease.Since disease control is directly related to increased crop production, the topics covered in this book are of major economic significance. This economic importance coupled with the clear, concise coverage of the materials, render Molecular Plant Pathology an extremely useful reference for academic and industrial researchers in plant pathology and other related areas of study.Features

Molecular Plant Taxonomy

by Pascale Besse

Plant taxonomy is an ancient discipline facing new challenges with the current availability of a vast array of molecular approaches which allow reliable genealogy-based classifications. Although the primary focus of plant taxonomy is on the delimitation of species, molecular approaches also provide a better understanding of evolutionary processes, a particularly important issue for some taxonomic complex groups. Molecular Plant Taxonomy: Methods and Protocolsdescribes laboratory protocols based on the use of nucleic acids and chromosomes for plant taxonomy, as well as guidelines for phylogenetic analysis of molecular data. Experts in the field also contribute review and application chapters that will encourage the reader to develop an integrative taxonomy approach, combining nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play. Written in the successfulMethods in Molecular Biologyseries format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Molecular Plant Taxonomy: Methods and Protocolsseeks to provide conceptual as well as technical guidelines to plant taxonomists and geneticists.

Molecular Plant Taxonomy: Methods and Protocols (Methods in Molecular Biology #2222)

by Pascale Besse

This fully updated edition explores conceptual as well as technical guidelines for plant taxonomists and geneticists, such as the increasing use of next-generation sequencing (NGS) technologies for numerous applications in plant taxonomy. The volume provides molecular approaches to be used within an “integrative taxonomy” framework, combining a range of nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany, etc.), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Molecular Plant Taxonomy: Methods and Protocols, Second Edition is an ideal guide for researchers seeking a better understanding of evolutionary processes, at species and population level, through molecular techniques.

Molecular Plant Virology: Volume I: Virus Structure and Assembly and Nucleic Acid-Protein Interactions

by Davis

In calling this series Molecular Plant Virology, I had in mind aspects of plant virology of interest to biochemists, molecular geneticists, biophysicists, genetic engineers, or, collectively,molecular biologists. At the same time, the intention was to provide up-to-date reviews, by expert contributors, on current research topics in plant virology of interest and referential use to virologists and plant biologists. The selected topics are pitched mainly at a research level, but with sufficient introduction and cross-referencing to enable graduate students to enter this fascinating field and, hopefully, not get lost.

Molecular Plant Virology: Volume II: Replication and Gene Expression

by Davis

In calling this series Molecular Plant Virology, I had in mind aspects of plant virology of interest to biochemists, molecular geneticists, biophysicists, genetic engineers, or, collectively,molecular biologists. At the same time, the intention was to provide up-to-date reviews, by expert contributors, on current research topics in plant virology of interest and referential use to virologists and plant biologists. The selected topics are pitched mainly at a research level, but with sufficient introduction and cross-referencing to enable graduate students to enter this fascinating field and, hopefully, not get lost.

Molecular Profiling

by Virginia Espina

The next revolution in molecular medicine is the application of molecular profiling to individualized patient therapy. Molecular profiling technology has advanced dramatically, particularly in the field of cancer tissue biomarkers. It is now possible to gather complex genomic and proteomic information from a routine clinical needle biopsy or surgical specimen. In Molecular Profiling : Methods and Protocols, expert researchers in the field focus on the entire process from discovery to commercialization, with practical guides that are not limited to experimental methods. Written in the highly successful Methods in Molecular Biology(tm) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, as well as essays and guidelines for grants, patents, and commercialization of products related to molecular profiling. Authoritative and practical, Molecular Profiling: Methods and Protocols seeks to aid scientists in understanding the latest advancements in genomics, proteomics, imagining, and bioinformatics.

Molecular Profiling

by Virginia Espina Lance A. Liotta

The next revolution in molecular medicine is the application of molecular profiling to individualized patient therapy. Molecular profiling technology has advanced dramatically, particularly in the field of cancer tissue biomarkers. It is now possible to gather complex genomic and proteomic information from a routine clinical needle biopsy or surgical specimen. In Molecular Profiling : Methods and Protocols, expert researchers in the field focus on the entire process from discovery to commercialization, with practical guides that are not limited to experimental methods. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, as well as essays and guidelines for grants, patents, and commercialization of products related to molecular profiling. Authoritative and practical, Molecular Profiling: Methods and Protocols seeks to aid scientists in understanding the latest advancements in genomics, proteomics, imagining, and bioinformatics.

Molecular Properties via Induced Current Densities (Springer Theses)

by Francesco Ferdinando Summa

This book outlines past and new developments in molecular response theory in terms of static and dynamic-induced current densities and showcases an important step forward in the field of molecular density functions and their topological analysis. The book begins with a general perspective on topics such as classical Hamiltonian, quantum mechanical Hamiltonian, and topological analysis of the electron charge density, followed by an in-depth overview of time-dependent and -independent perturbations, and applications. In this book, the author presents a completely new approach that allows the interpretation of electric and magnetic properties through origin-independent density functions. Readers will also find examples of how the new origin-independent density functions are useful for rationalizing the chemical behavior of molecules interacting with impinging radiation. The concepts contained within the book are the basis for a deeper understanding of Nuclear magnetic resonance (NMR) and Electron paramagnetic resonance (EPR) spectroscopies, as well as the mechanisms that give rise to electric polarization and optical activity in chiral systems. A basic knowledge of quantum mechanics and ab initio electronic structure calculation methods such as Hartree-Fock and Density Functional Theory is required. Given its breadth, the book provides an important contribution to the field of Quantum Chemical Topology and appeals to students and researchers interested in learning more about the relationship between electrical and magnetic properties, density functions derivable from them and experimental observables.

Molecular Quantum Dynamics

by Fabien Gatti

This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Molecular Quantum Electrodynamics

by T. Thirunamachandran D. P. Craig

This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It features formal derivations of the quantized field matrix elements for an amazing number of laser-molecule interaction effects: one- and two-photon absorption and emission; Rayleigh and Raman scattering; dispersion forces in a radiation field; radiation-induced chiral discrimination; both linear and nonlinear optical processes such as Coherent Anti-Stokes Raman Scattering (CARS) and laser-induced optical rotation; self-energy; and the Lamb shift.Virtually a one-volume encyclopedia, this self-contained book starts with first principles, making it useful both for students and experts in the field. Molecular physicists, quantum chemists, chemical physicists, and theoretical chemists will find essential calculation techniques explained with the greatest clarity.

Molecular Rearrangements in Organic Synthesis

by Christian M. Rojas

Designed for practitioners of organic synthesis, this book helps chemists understand and take advantage of rearrangement reactions to enhance the synthesis of useful chemical compounds. Provides ready access to the genesis, mechanisms, and synthetic utility of rearrangement reactions Emphasizes strategic synthetic planning and implementation Covers 20 different rearrangement reactions Includes applications for synthesizing compounds useful as natural products, medicinal compounds, functional materials, and physical organic chemistry

Molecular Recognition of DNA Double Helix: Gene Regulation And Photochemistry Of Bru Substituted Dna (Springer Theses)

by Abhijit Saha

In this book, the molecular recognition of DNA using small molecules is discussed, with a study of the photochemistry of BrU-labeled DNA. The purposes of the study were to develop small molecules for regenerative medicine, to develop a method to detect the recognition site of small molecules, and to detect the most important biological phenomena using the photochemistry of BrU-labeled DNA. The study began with the design and development of small molecules that can induce pluripotency genes. To deal with the important issue of cell permeability of the original compound, a new analogue of the original with improved gene expression was designed and synthesized. Using the photochemistry of BrU-labeled DNA, crucial biological phenomena such as cooperativity between transcription factors were detected. For the first time, the cooperativity was examined by excess electron transfer assay. DNA was also studied very carefully in order to understand the mechanism of the double-strand break in the UVA micro-irradiation technique. The mechanism of the double strand remained untouched. Nevertheless, the double-strand break mechanism was clearly demonstrated by Hoechst dye, as shown in this book.

Molecular Regulation of Arousal States

by Ralph Lydic

Arousal states are processes that include waking, deep sleep, and the dreaming phase of sleep (REM). Molecular Regulation of Arousal States explores the cellular and molecular mechanisms by which sleep and wakefulness are regulated and seeks explanations for the generation of arousal states. It presents step-by-step research protocols that allow investigators to apply the techniques described to a wide range of physiological and behavioral research problems, such as sleep neurobiology and state-dependent disruption of cardiopulmonary control. For the first time, a single source integrates cellular and molecular research techniques with studies of arousal, opening the door to exciting new research methodologies.

Molecular Response Functions for the Polarizable Continuum Model

by Roberto Cammi

This Brief presents the main aspects of the response functions theory (RFT) for molecular solutes described within the framework of the Polarizable Continuum Model (PCM). PCM is a solvation model for a Quantum Mechanical molecular system in which the solvent is represented as a continuum distribution of matter. Particular attention is devoted to the description of the basic features of the PCM model, and to the problems characterizing the study of the response function theory for molecules in solution with respect to the analogous theory on isolated molecules.

Molecular Robotics: An Introduction

by Satoshi Murata

In this book, researchers at the forefront of the field explain the minimum necessary background knowledge and introduce important topics in molecular robotics in an easy-to-understand manner.Molecular robotics is related to many fields, such as systems engineering, control engineering, computer science, biochemistry, biophysics, polymer chemistry, nucleic acid chemistry, molecular biology, and ethics. The whole picture of molecular robotics can be grasped only by looking at these fields from a bird's-eye view. This book has been planned in the belief that such a book is essential for students and those new to the field to understand the ongoing expansion of molecular robotics.The book consists of eight chapters: introduction, design theory of molecular robots, systemization technology, molecular nanotechnology, molecular actuators, molecular materials, medical applications, and social acceptance. In each chapter, the reader can get a general idea of the theory, underlying technology, medical applications, and social issues, and can also understand what is currently being done on the research front. In addition, there are many parts that introduce topics related to molecular robotics.

Molecular Science of Fluctuations Toward Biological Functions

by Masahide Terazima Mikio Kataoka Ryuichi Ueoka Yuko Okamoto

In this monograph, the importance of fluctuations forbiological reactions is discussed from various points of view. Understandingthe biological reactions at the molecular level is one of the major targets inmany scientific fields, including not only basic biology but also physics,physical chemistry, and medical science. One of the key factors in the processis "fluctuation". Thermal energy causes biological molecules to be in constantfluctuation even while they are carrying out their biological functions. How dobiological systems overcome the thermal fluctuations to realize thephysiologically relevant reactions? Scientists in a number of fields--physics,chemistry, pharmacology, medicine, and others--have contributed chapters thatelucidate the nature of the fluctuations and the relationship betweenfluctuations and biological functions. The fluctuations discussed in this volumeare detected by the transient grating method, nuclear magnetic resonance, X-raydiffraction and scattering, and computer simulation, among other methods. Thebook presents various results of the studies of fluctuations in biologicalprocesses that were obtained with these methods by the leading scientists intheir fields.

Molecular Simulation on Cement-Based Materials: From Theory to Application

by Dongshuai Hou

This book presents a number of studies on the molecular dynamics of cement-based materials. It introduces a practical molecular model of cement-hydrate, delineates the relationship between molecular structure and nanoscale properties, reveals the transport mechanism of cement-hydrate, and provides useful methods for material design. Based on the molecular model presented here, the book subsequently sheds light on nanotechnology applications in the design of construction and building materials. As such, it offers a valuable asset for researchers, scientists, and engineers in the field of construction and building materials.

Molecular Simulation Studies on Thermophysical Properties

by Gabriele Raabe

This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

Molecular Soft-Interface Science: Principles, Molecular Design, Characterization and Application

by Mizuo Maeda Atsushi Takahara Hiromi Kitano Tetsuji Yamaoka Yoshiko Miura

This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.

Molecular Spectroscopy of Dynamically Compressed Materials (Shock Wave and High Pressure Phenomena)

by David S. Moore

This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.

Refine Search

Showing 46,351 through 46,375 of 76,666 results