- Table View
- List View
Materialising the Future: A Learning Path to Understand, Develop and Apply Emerging Materials and Technologies (Research for Development)
by Venere Ferraro Pirjo Kääriäinen Paz Morer-Camo Anke PasoldThis open access book offers a host of theoretical knowledge at the basis of new EM&Ts (namely, Interactive Connected Smart Materials, Wearables (ICS), Nanomaterials, Advanced Growing Materials, and Experimental Wood-Based Materials), as communicated through the unique design teaching method developed within the context of the European Project DATEMATS, a result of the creative workshops held by the four higher education institutions that were partners in the project, stressing the pros and cons of the method and offering ideas for further development and improvement. The modern age requires its own innovations in regards to both social and industrial progress, innovations made possible by Emerging Materials and Technologies (EM&Ts). Frameworks for designing both with and for the new materials are presented, educating designers about the opportunities offered by EM&Ts and how to take advantage of them. At the same time, the book explains how the method developed through the knowledge generated at research centers and universities can be communicated to companies across various industries that stand to gain from it, linking the assorted stakeholders, and includes a final chapter based on feedback from both students and business professionals as to the benefits of academic/industrial cooperation. This is an open access book.
The Materiality of Lake Kariba: Water, Livelihoods, Belonging and Conservation
by Joshua MatanzimaThis book is an exploration of one of the world’s largest man-made reservoirs, Lake Kariba, created along the Zambezi River in central Africa. Originally built for electricity generation, as the lake reached its full capacity in 1963 it attracted other socioeconomic activities such as tourism, recreation, fisheries, and conservation. The material properties of the waterscape (including waves, strong winds, water volumes, deities and aquatic species) have shaped these socioeconomic activities since its creation. Community interpretations of the reservoir feature stories of fear, death, income generation, livelihoods, illegal cross-border trade, religion and everyday conflicts with wild animals. Drawing on extended ethnographic research and the author’s personal experience growing up around Lake Kariba, this empirically-rich book provides a nuanced discussion of the ways in which the waterscape shapes people’s lives and livelihoods. Additionally, the book explores the challenges ofsustaining and preserving Lake Kariba's unique ecosystem amidst environmental pressures and competing demands for resources. Readers will gain a nuanced perspective of the significance of the lake, its relationship with neighboring communities, and its evolution over time.
Materializing the Foundations of Quantum Mechanics: Instruments and the First Bell Tests (SpringerBriefs in History of Science and Technology)
by Climério Paulo da Silva NetoThis book offers a history of the instrumentation used to materialize the early thought experiments devised in the Einstein-Bohr disputes over the foundations of quantum mechanics. It shows how the second world war and cold war fostered the development of materials, instruments, and systems that made it possible to create, manipulate, and detect single quantum systems, thus creating the material conditions for experiments in foundations of quantum mechanics and for a broad spectrum of experimental inquiries on the structure and properties of matter which underlay the creation of new research fields such as quantum optics, quantum information, and atomic, molecular, and optical physics. Discussing research and development performed in diverse contexts, this book reveals how physicists carried instruments, and the knowledge they embodied, through disciplinary and geographic frontiers to probe entanglement, a most intriguing feature of the quantum world.
Materials
by Lynn Huggins-CooperLearn more about what things are solids, gases, liquids, and how they change.
Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers (CISM International Centre for Mechanical Sciences #611)
by Alexander L. Yarin Filippo Pierini Eyal Zussman Marco LauricellaThe book is interwoven according to the intrinsic logics of modern most important applications of electrospun nanofibers. It discusses such application-oriented nanofibers as self-healing vascular nanotextured materials, biopolymer nanofibers, soft robots and actuators based on nanofibers, biopolymer nanofiber-based triboelectric nanogenerators, metallized nanofibers, and heaters and sensors based on them. It also includes such topics as the injectable nanofibrous biomaterials, fibrous hemostatic agents and their interaction with blood, as well as electrospun nanofibers for face-mask applications. The book also details polyelectrolytes-based complex nanofibers and their use as actuators. It also covers drug release facilitated by polyelectrolytes-based complex nanofibers. The fundamental aspects of electrospinning of polymer nanofibers discussed in the final part of the book link them to the applications described in the preceding chapters. Such topics as polymer solution preparation and their rheological properties, e.g., viscoelasticity and the related spinnability, the electrical conductivity of polymer solutions, and the cascade of the physical phenomena resulting in formation of nanofibers encompass the experimental aspects. Also, the general quasi-1D equations used for modeling of formation of electrospun polymer nanofibers, and the numerical aspects of their solution are discussed in detail, including such modeling-driven applications as nanofiber alignment by electric focusing fields.
Materials and Expertise in Early Modern Europe: Between Market and Laboratory
by Ursula Klein E. C. SparyIt is often assumed that natural philosophy was the forerunner of early modern natural sciences. But where did these sciences' systematic observation and experimentation get their starts? In Materials and Expertise in Early Modern Europe, the laboratories, workshops, and marketplaces emerge as arenas where hands-on experience united with higher learning. In an age when chemistry, mineralogy, geology, and botany intersected with mining, metallurgy, pharmacy, and gardening, materials were objects that crossed disciplines. Here, the contributors tell the stories of metals, clay, gunpowder, pigments, and foods, and thereby demonstrate the innovative practices of technical experts, the development of the consumer market, and the formation of the observational and experimental sciences in the early modern period. Materials and Expertise in Early Modern Europe showcases a broad variety of forms of knowledge, from ineffable bodily skills and technical competence to articulated know-how and connoisseurship, from methods of measuring, data gathering, and classification to analytical and theoretical knowledge. By exploring the hybrid expertise involved in the making, consumption, and promotion of various materials, and the fluid boundaries they traversed, the book offers an original perspective on important issues in the history of science, medicine, and technology.
Materials and Manufacturing Capabilities for Sustaining Defense Systems
by Defense Materials Manufacturing and Infrastructure Standing Committee National Research Council Division on Engineering and Physical Sciences Robert J. KattThe Standing Committee on Defense Materials Manufacturing and Infrastructure (DMMI) conducted a workshop on July 23-24, 2012, to share information and gather perspectives on issues concerning Materials and Manufacturing Capabilities for Sustaining Defense Systems. This workshop, held at the headquarters building of the National Academies, 2101 Constitution Avenue N.W., Washington D.C., was conducted according to the procedures of the National Research Council (NRC) for a convening activity. That is, all workshop participants--including presenters, members of the DMMI standing committee, Reliance 21, invited guests, and visitors--spoke as individuals, and no overall findings, conclusions, or recommendations were developed during or as a result of the workshop. All statements and views summarized in this publication are attributable only to those individuals who expressed them. It is worth noting that the sponsor, Reliance 21, is a Department of Defense group of professionals that was established to enable the DOD science and technology (S&T) community to work together to enhance Defense S&T programs, eliminate unwarranted duplication, and strengthen cooperation among the military services and other DOD agencies. The DMMI standing committee named a workshop planning group to develop the workshop agenda and decide on invited guests and presenters, in accordance with the statement of task approved by the Governing Board of the NRC. The planning group also consulted with the Reliance 21 materials and processing community of interest. The presentations and discussions during the workshop are summarized sequentially in the main part of this report. As an aid to readers, nine themes have been identified by the author that recurred in multiple presentations and discussions. Materials and Manufacturing Capabilities for Sustaining Defense Systems: Summary of a Workshop explains these nine themes and summarizes the two day workshop.
Materials and Methods for Industrial Wastewater and Groundwater Treatment
by S. K. NatarajAn expert synthesis of the latest materials and methods with applications for groundwater and wastewater treatment Materials and Methods for Industrial Wastewater and Groundwater Treatment delivers an up-to-date discussion of the materials and methods being used to address the problem of pollutants in industrial wastewaters and groundwater. The book describes innovative new materials with significant potential to emerge as a next-generation solution in the water treatment space. Cutting-edge research is synthesized into these novel materials and methods and case studies demonstrate real-world applications of new solutions for water treatment. Readers will also find: A thorough introduction to new materials and techniques for treating wastewater and groundwater to remove pollutantsComprehensive explorations of the latest research on commercially viable methods for treating wastewater and groundwaterCase studies highlighting the practical application of novel methods and materials as next-generation solutions for water treatment Perfect for industrial chemists, environmental and material researchers and supervisors, and consulting and design engineers in wastewater treatment plants, Materials and Methods for Industrial Wastewater and Groundwater Treatment will also benefit design professionals, materials scientists, and environmental engineers with an interest in nanomaterial applications to wastewater treatments.
Materials and Processes
by Barrie D. DunnThe objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Space hardware captured by astronauts and returned to Earth from long durations in space are examined. Information detailed in the Handbook is applicable to general terrestrial applications including consumer electronics as well as high reliability systems associated with aeronautics, medical equipment and ground transportation. This Handbook is also directed to those involved in maximizing the relia bility of new materials and processes for space technology and space engineering. It will be invaluable to engineers concerned with the construction of advanced structures or mechanical and electronic sub-systems.
Materials and Processes for CO2 Capture, Conversion, and Sequestration
by Winnie Wong-Ng Lan Li Kevin Huang Lawrence P. CookAddresses materials, technology, and products that could help solve the global environmental crisis once commercialized This multidisciplinary book encompasses state-of-the-art research on the topics of Carbon Capture and Storage (CCS), and complements existing CCS technique publications with the newest research and reviews. It discusses key challenges involved in the CCS materials design, processing, and modeling and provides in-depth coverage of solvent-based carbon capture, sorbent-based carbon capture, membrane-based carbon capture, novel carbon capture methods, computational modeling, carbon capture materials including metal organic frameworks (MOF), electrochemical capture and conversion, membranes and solvents, and geological sequestration. Materials and Processes for CO2 Capture, Conversion and Sequestration offers chapters on: Carbon Capture in Metal-Organic Frameworks; Metal Organic Frameworks Materials for Post-Combustion CO2 Capture; New Progress of Microporous Metal-Organic Frameworks in CO2 Capture and Separation; In Situ Diffraction Studies of Selected Metal-Organic Framework (MOF) Materials for Guest Capture Applications; Electrochemical CO2 Capture and Conversion; Electrochemical Valorization of Carbon Dioxide in Molten Salts; Microstructural and Structural Characterization of Materials for CO2 Storage using Multi-Scale X-Ray Scattering Methods; Contribution of Density Functional Theory to Microporous Materials for Carbon Capture; and Computational Modeling Study of MnO2 Octahedral Molecular Sieves for Carbon Dioxide Capture Applications. Addresses one of the most pressing concerns of society—that of environmental damage caused by the greenhouse gases emitted as we use fossil fuels Covers cutting-edge capture technology with a focus on materials and technology rather than regulation and cost Highlights the common and novel CCS materials that are of greatest interest to industrial researchers Provides insight into CCS materials design, processing characterization, and computer modeling Materials and Processes for CO2 Capture, Conversion and Sequestration is ideal for materials scientists and engineers, energy scientists and engineers, inorganic chemists, environmental scientists, pollution control scientists, and carbon chemists.
Materials and Processes for Nuclear Energy Today and in the Future (ISTE Consignment)
by Fanny Balbaud-Célérier Céline CabetAs a low carbon energy source, nuclear energy plays a reinforced role in a sustainable electricity mix. However, strengthening the share of nuclear energy implies the guarantee of safe, long-term operation of current systems and potentially the fostering of new constructions. Service life extension – as well as the design of future nuclear power plants – relies on the availability of robust and qualified structural materials, and their manufacturing processes. The science and engineering of materials are key in selecting robust material solutions and predicting aging mechanisms. Materials and Processes for Nuclear Energy Today and in the Future reviews different reactor concepts and fuel management systems. Nuclear equipment has to maintain integrity under extreme conditions, such as high temperature, radiation, loads and/or corrosive environments. This book analyzes the requirements on components, and introduces reference solutions regarding materials and processes. It describes the materials’ main properties, their limits and the current R&D trends. Lastly, innovations are discussed, such as materials with enhanced properties, advanced manufacturing or using AI.
Materials and Technologies for Future Advancement (Advanced Structured Materials #193)
by Azman Ismail Fatin Nur Zulkipli Syajaratunnur Yaakup Andreas ÖchsnerThis book is a platform to publish new progress in the field of materials and technologies that can offer significant developments with the possibility of changing the future. These emerging developments will change the way we live now at an unprecedented pace across our society. It is important to note that such modern developments are no longer restricted to a single discipline, but are the outcome of a multidisciplinary approach, which combines many different engineering disciplines. This book explores the new technology landscape that will have the direct impact on production-related sectors, individually and in combination with different disciplines. A major driver for this actual research is the efficiency, many times connected with a focus on environmental sustainability.
Materials and Working Mechanisms of Secondary Batteries
by Chuan-zheng Yang Yuwan Lou Jian Zhang Xiaohua Xie Baojia XiaThis book provides a description of material characterization and mechanisms of secondary batteries during discharge, cycle, and storage process. It also proposes a new intercalation/de-intercalation theory and presents the mechanism of ionic conduction. In addition, through the comparative study of variation laws of battery performance and of fine structure and microstructure parameters, the mechanism of cycle and storage processes and battery performance decay are investigated. Given its scope, the book appeals to a broad readership, particularly professionals at universities and scientific research institutes.
Materials Aspect of Thermoelectricity
by Ctirad UherIn recent years, novel families of materials have been discovered and significant improvements in classical thermoelectric materials have been made. Thermoelectric generators are now being used to harvest industrial heat waste and convert it into electricity. This is being utilized in communal incinerators, large smelters, and cement plants. Leading car and truck companies are developing thermoelectric power generators to collect heat from the exhaust systems of gasoline and diesel engines. Additionally, thermoelectric coolers are being used in a variety of picnic boxes, vessels used to transport transplant organs, and in air-conditioned seats of mid-size cars. Consisting of twenty-one chapters written by top researchers in the field, this book explores the major advancements being made in the material aspects of thermoelectricity and provides a critical assessment in regards to the broadening of application opportunities for thermoelectric energy conversion.
Materials Characterization Techniques
by Sam Zhang Lin Li Ashok KumarExperts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche
Materials, Chemicals and Methods for Dental Applications
by Johannes Karl FinkThis book focuses on the materials used for dental applications looking at the fundamental issues and the developments that have taken place the past decade. While it provides a broad overview of dental materials, the chemicals that are used for the preparation and fabrication of dental materials are explained as well. Also, the desired properties of these materials are discussed and the relevance of the chemical, physical, and mechanical properties is elucidated. Methods for the characterization and classification, as well as clinical studies are reviewed here. In particular, materials for dental crowns, implants, toothpaste compositions, mouth rinses, as well as materials for toothbrushes and dental floss are discussed. For example, in toothpaste compositions, several classes of materials an chemcials are incorporated, such as abrasives, detergents, humectants, thickeners, sweeteners, coloring agents, bad breath reduction agents, flavoring agents, tartar control agents, and others. These chemicals, together with their structures, are detailed in the text.
Materials Chemistry
by Bradley D. FahlmanThe 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field -- in a concise format. The 2nd edition continues to offer innovative coverage and practical perspective throughout, e.g.: the opening solid-state chemistry chapter uses color illustrations of crystalline unit cells and digital photos of models to clarify their structures. This edition features more archetypical unit cells and includes fundamental principles of X-ray crystallography and band theory. In addition, an ample amorphous-solids section has been expanded to include more details regarding zeolite syntheses, as well as ceramics classifications and their biomaterial applications. The subsequent metals chapter has been re-organized for clarity, and continues to treat the full spectrum of powder metallurgical methods, complex phase behaviors of the Fe-C system and steels, and topics such as corrosion and shape-memory properties. The mining/processing of metals has also been expanded to include photographs of various processes occurring in an actual steelmaking plant. The semiconductor chapter addresses evolution and limitations/solutions of modern transistors, as well as IC fabrication and photovoltaics. Building on the fundamentals presented earlier, more details regarding the band structure of semiconductors is now included, as well as discussions of GaAs vs. Si for microelectronics applications, and surface reconstruction nomenclature. The emerging field of 'soft lithographic' patterning is now included in this chapter, and thin film deposition methodologies are also greatly expanded to now include more fundamental aspects of chemical vapor deposition (CVD) and atomic layer deposition (ALD). The polymer and 'soft' materials chapter represents the largest expansion for the 2nd edition. This chapter describes all polymeric classes including dendritic polymers, as well as important additives such as plasticizers and flame-retardants, and emerging applications such as molecular magnets and self-repairing polymers. This edition now features 'click chemistry' polymerization, silicones, conductive polymers and biomaterials applications such as biodegradable polymers, biomedical devices, drug delivery, and contact lenses. Final chapters on nanomaterials and materials-characterization techniques are also carefully surveyed, focusing on nomenclature, synthetic techniques, and applications taken from the latest scientific literature. The 2nd edition has been significantly updated to now include nanotoxicity, vapor-phase growth of 0-D nanostructures, and more details regarding synthetic techniques and mechanisms for solution-phase growth of various nanomaterials. Graphene, recognized by the 2010 Nobel Prize in Physics, is now also included in this edition. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions. The appendices have also been updated with additional laboratory modules for materials synthesis (e.g., porous silicon) and a comprehensive timeline of major materials developments.
Materials Chemistry
by Bradley D. FahlmanThe 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.
Materials Chemistry
by Bradley D. FahlmanThis award-winning textbook delivers an earnest and comprehensive treatment of the rapidly evolving field of Materials Chemistry. It addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the field—in a concise and accessible format.The updated 4th edition features significant updates to glasses and ceramics, solid-state impurities, nanomaterial toxicity, as well as materials used in energy storage, photovoltaic, and electronics applications. Advanced fabrication techniques such as additive manufacturing (3-D printing) and dynamic light scattering (DLS) characterization of suspended nanoparticles are now also included. This new edition also expands the coverage of sustainability and life cycle analysis, of increasing importance for a world plagued with the effects of climate change.Recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA), Fahlman’s Materials Chemistry is ideal for upper-level undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, and may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications and an updated list of thought-provoking questions.
Materials Chemistry of Ceramics
by Junichi HojoThis book provides fundamental knowledge of ceramics science and technology in a compact volume. Based on inorganic chemistry, it is intended as a reader for graduate students and young researchers beginning work in ceramics. The importance of the book is that it provides a scientific understanding of structure, properties, and processing from the chemical aspect, leading to creation of future ceramics. Ceramics have high hardness, strength, thermal and chemical stability, as well as various electromagnetic functions. To take full advantage of ceramics, their use has been advanced to engineering and electronic ceramics. Most ceramics have been fabricated by powder processing, and new technologies have also evolved such as CVD and sol-gel methods: new ceramics aimed at new functions of highly pure oxides and artificial nitrides, carbides, and borides; fine ceramics focused on precise control of composition and microstructure; and design of unique morphology, such as nanoparticles, nanofibers, nanosheets, mesoporous materials, and hybrids. Materials are composed of atoms and molecules. They are assembled into crystals and are amorphous, leading to 3-D micro/nano structures. In addition to the topics described above, this book shows the importance of chemistry for materials design at the nanometer scale, and that chemistry develops new fields of environment, energy, informatics, biomaterials, and other areas.nojpkpo
Materials Design and Applications III (Advanced Structured Materials #149)
by Lucas F. M. da SilvaThis book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.
Materials Design and Applications IV (Advanced Structured Materials #168)
by Lucas F. M. da SilvaThis book offers selected contributions on fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, multi-scale experimental and computational aspects.
Materials Design and Applications V (Advanced Structured Materials #212)
by Lucas F. M. da SilvaThis book discusses several issues relevant to materials design and applications. The focus is on fundamental research and application areas in the field of the design and application of engineering materials, predominantly within the context of mechanical engineering applications. This includes a wide range of materials engineering and technology, including metals, e.g., lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing of new materials, testing methods, multi-scale experimental and computational aspects. The book publishes selected papers presented at the 5th International Conference on Materials Design and Applications 2024 (MDA 2024), held during July 4–5, 2024.
Materials Development and Processing for Biomedical Applications
by Savaş Kaya Sasikumar Yesudass Srinivasan Arthanari Sivakumar Bose Goncagül SerdaroğluMaterials Development and Processing for Biomedical Applications focuses on various methods of manufacturing, surface modifications, and advancements in biomedical applications. This book examines in detail about five different aspects including, materials properties, development, processing, surface coatings, future perspectives and fabrication of advanced biomedical devices. Fundamental aspects are discussed to better understand the processing of various biomedical materials such as metals, ceramics, polymers, composites, etc. A wide range of surface treatments are covered in this book that will be helpful for the readers to understand the importance of surface treatments and their future perspectives. Additional Features Include: Examines various properties of biomedical materials at the beginning in several chapters which will enrich the fundamental knowledge of the readers. Discusses advancements in various fields of biomedical applications. Provides a glimpse of characterization techniques for the evaluation of material properties. Addresses biocompatibility, biocorrosion, and tribocorrosion. This book explores new and novel strategies for the development of materials and their biomedical applications. It will serve as a comprehensive resource for both students and scientists working in materials and biomedical sciences.
Materials for Biomedical Engineering: Fundamentals and Applications
by Mohamed N. Rahaman Roger F. BrownMATERIALS FOR BIOMEDICAL ENGINEERING A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. Materials for Biomedical Engineering: Fundamentals and Applications provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications Features a thorough overview of the history, properties, and applications of biomaterials Includes numerous homework, review, and examination problems, full references, and further reading suggestions Materials for Biomedical Engineering: Fundamentals and Applications is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.