Browse Results

Showing 46,601 through 46,625 of 83,299 results

Materials for Biomedical Simulation: Design, Development and Characterization (Materials Horizons: From Nature to Nanomaterials)

by Arnab Chanda Sarabjeet Singh Sidhu Gurpreet Singh

The book provides an overview of prospective material simulants for hard tissues, such as knee joints, hip joint, and bones, and soft tissues, such as skin, muscles, and functional organs. These materials can repair, replace the functionality, or mimic the mechanical, structural, and biological properties of the parent tissue. This book discusses hard and soft human tissue simulating biomaterials under a single umbrella, covering a broad area of design and development of biomaterials, implants, and multi-functional materials along with their characterization. The progress in emerging biomaterials has increased manifold in the recent decades with the unprecedented focus on healthcare technologies. This book is dedicated to ground-breaking research in biomaterials and highlights the current trends and future roadmap of different materials for simulation of hard and soft tissues. Authored by prominent researchers around the globe, the chapters of this book emphasize recent advances in biomedical material simulation. This book brings together novel contributions to different aspects of hard and soft human tissue-based biomaterials, including recent advances and emerging developments in designing and developing simulants for tissue replacement alternatives. This book is anticipated to serve as a key reference textbook for research in tissue engineering & biomedical engineering, biomaterials, biomechanics, and implant & medical device development with contributed chapters solicited in the areas of soft materials, such as elastomers, hydrogels, etc., for various applications; auxetic metamaterials; additive manufacturing of bio-implants; artificial tissues and organs; development of biomimetic materials; medical implants and biomedical device design; bioinspired and bio-tribological materials; advances in materials science for biomaterial applications; biomechanical characterization of hard and soft human tissues; bioprinting and nano-biomaterials.

Materials for Carbon Capture

by De-En Jiang

Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Materials for Chemical Sensors

by Subhendu Bhandari Arti Rushi

Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.

Materials for Devices (Advances in Materials Science and Engineering)

by Sam Zhang

From everyday applications to the rise of automation, devices have become ubiquitous. Specific materials are employed in specific devices because of their particular properties, including electrical, thermal, magnetic, mechanical, ferroelectric, and piezoelectric. Materials for Devices discusses materials selection for optimal application and highlights current materials developments in gas sensors, optical devices, mechanoelectrical devices, and medical and biological devices. Explains how to select the right material for the right device Includes 2D materials, thin films, smart piezoelectric films, and more Presents details on organic solar cells Describes thin films in sensors, actuators, and LEDs Covers thin films and elastic polymers in biomedical devices Discusses growth and characterization of intrinsic magnetic topological insulators This work is aimed at researchers, technologists, and advanced students in materials and electrical engineering and related fields who are interested in developing sensors or devices.

Materials for Electronic, Magnetic, and Spintronic Technologies: Characterization and Applications from Energy Storage to Disease Detection (Engineering Materials)

by Amodini Mishra Virat Dixit Divya Somvanshi Anu Singh Anju Mishra

This book consolidates the collective contributions of various authors, presenting a diverse array of materials for systematic property assessment and their subsequent application in electronic, magnetic, and spintronic technologies. Encompassing pure and modified polymers, metals, and semiconductors, the book elucidates the magnetic, photocatalytic, thermal, electrochemical, and other salient characteristics inherent in these materials. Delving into a broad spectrum of applications such as energy storage, environmental remediation (water purification), and biomedical (drug administration), the book carefully examines these materials in the context of their distinctive attributes. By elucidating the correlation between a material's functionality and its physical properties, this work offers a lucid and accessible presentation that facilitates an understanding of how these materials can be judiciously employed for specific purposes. Designed for researchers, graduate students, educators, engineers, industry researchers, and other informed members of the public, the comprehensive coverage of this book renders it an indispensable tool in the realm of materials science and technology. Through its meticulous exploration of various materials and their applications, this work stands as a valuable resource for those seeking a profound understanding of the intricate interplay between material properties and their functionalities.

Materials for Energy (Advances in Materials Science and Engineering)

by Sam Zhang

Materials for Energy offers a comprehensive overview of the latest developments in materials for efficient and sustainable energy applications, including energy conversion, storage, and smart applications. Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes applications that include flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Highlights current developments in energy conversion, storage, and applications from a materials angle Aimed at researchers, engineers, and technologists working to solve alternative energy issues, this work illustrates the state of the art and latest technologies in this important field.

Materials for Energy Conversion and Storage (Emerging Materials and Technologies)

by Hieng Kiat Jun Foo Wah Low

Development of new energy‑related materials is essential in addressing future energy demands. Materials for Energy Conversion and Storage focuses on the materials science related to energy conversion and energy storage technologies. It covers the principles of prospective energy technologies and their relationship to the performance of energy devices.• Covers fundamental principles of energy conversion and storage• Discusses materials selection, design, and performance tradeoffs• Details electrochemical cell construction and testing methodologies• Explores sustainable development of energy devices• Features case studiesAimed at readers in materials, electrical, and energy engineering, this book provides readers with a deep understanding of the role of materials in developing sustainable energy devices.

Materials for Energy Storage

by Andrews Nirmala Grace Niroj Kumar Sahu Arpan Kumar Nayak

Materials for Energy Storage offers a combinatorial understanding of materials science and electrochemistry in electrochemical energy storage devices with a holistic overview of the status, research gaps, and future opportunities. Rooted in a profound understanding of contemporary energy utilization, aligned with the sustainable development goals, this book delves deep into the several device chemistries, impact of nanomaterials, and critical factors related to the device performance. It discusses electrode-electrolyte interaction, device fabrication, and commercial aspects. This book will offer value to the graduate and postgraduate students, researchers, and industry professionals related to materials science and energy technology.

Materials for Engineers: Principles and Applications for Non-Majors

by Jonathan B. Puthoff Vilupanur A. Ravi

A working understanding of materials principles is essential in every area of engineering. However, the materials requirements of different engineering disciplines can vary considerably. Existing introductory textbooks on engineering materials adopt a universalist approach, providing theoretical development and surveying a landscape of topics suitable for introducing materials engineers to their field. Materials for Engineers: Principles and Applications for Non-Majors has been constructed with the requirements of non-materials engineering students (“non-majors") in mind. The theoretical foundations of material structure and behavior are curated and focused, and the description of the behavior of materials as they pertain to performance, measurement, and design are developed in detail.The book: Places applications and essential measurement methods before detailed theory Features a variety of types end-of-chapter exercises, including forum discussion topics for online course components Emphasizes computer-based problem solving and includes numerous examples and exercises for MATLAB® Includes optional “topic” chapters for course customization, including structures, transportation, and electronics Outlines practical details of how and why knowledge of materials is necessary for engineers, including the various roles that materials engineers play and the impact of materials on cost, lifespan, and safety of components and products This textbook is aimed at undergraduate engineering students taking their first materials engineering course. It can also be used by professional engineers interested in a ready reference. A solutions manual, lecture slides, and example data sets are available for adopting professors.

Materials for Hydrogen Production, Conversion, and Storage

by Inamuddin Tariq Altalhi Sayed Mohammed Adnan Mohammed A. Amin

MATERIALS FOR HYDROGEN PRODUCTION, CONVERSION, AND STORAGE Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel. Continually growing environmental concerns are driving every, or almost every, country on the planet towards cleaner and greener energy production. This ultimately leaves no option other than using hydrogen as a fuel that has almost no adverse environmental impact. But hydrogen poses several hazards in terms of human safety as its mixture of air is prone to potential detonations and fires. In addition, the permeability of cryogenic storage can induce frostbite as it leaks through metal pipes. In short, there are many challenges at every step to strive for emission-free fuel. In addition to these challenges, there are many emerging technologies in this area. For example, as the density of hydrogen is very low, efficient methods are being developed and engineered to store it in small volumes. This groundbreaking new volume describes the production of hydrogen from various sources along with the protagonist materials involved. Further, the extensive and novel materials involved in conversion technologies are discussed. Also covered here are the details of the storage materials of hydrogen for both physical and chemical systems. Both renewal and non-renewal sources are examined as feedstocks for the production of hydrogen. The non-renewal feedstocks, mainly petroleum, are the major contributor to date but there is a future perspective in a renewal source comprising mainly of water splitting via electrolysis, radiolysis, thermolysis, photocatalytic water splitting, and biohydrogen routes. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.

Materials for Land, Air, and Space Transportation (Advances in Materials Science and Engineering)

by Yinquan Yu Sam Zhang

As transportation systems for land, air, and space vehicles continue to grow increasingly sophisticated, more advanced materials are needed to support their development and commercialization. Materials for Land, Air, and Space Transportation details new materials development for these transportation applications, emphasizing physical properties, research theories, and cutting-edge processing technologies, as well as advanced high-precision inspection methodologies.• Covers materials, design, and manufacturing for lightweight vehicles, high-speed trains, fuel cell vehicles, and aerospace and aeronautical use.• Focuses on the newest material function and processing technologies, covering nanotechnology, modern additive manufacturing techniques, and physical and mechanical studies of structure-sensitive properties of materials.• Describes theoretical deduction, numerical simulation, and experimental studies of various materials.This reference will be of interest to engineers and researchers in the disciplines of materials, mechanical, and transportation engineering, and related areas.

Materials for Sustainable Energy Storage at the Nanoscale

by Fabian I. Ezema M. Anusuya Assumpta C. Nwanya

The book Materials for Sustainable Energy Storage Devices at the Nanoscale anticipates covering all electrochemical energy storage devices such as supercapacitors, lithium-ion batteries (LIBs), and fuel cells,transformation and enhancement materials for solar cells, photocatalysis, etc. The focal objective ofthe book is to deliver stunning and current information to the materials application at nanoscale toresearchers and scientists in our contemporary time towardthe enhancement of energy conversion andstorage devices. However, the contents of the proposed book, Materials for Sustainable Energy Storageat the Nanoscale, will cover various fundamental principles and wide knowledge of different energyconversion and storage devices with respect to their advancement due to the emergence of nanoscalematerials for sustainable storage devices. This book is targeted to be award-winning as well as a referencebook for researchers and scientists working on different types of nanoscale materials-based energystorage and conversion devices. Features Comprehensive overview of energy storage devices, an important field of interest for researchers worldwide Explores the importance and growing impact of batteries and supercapacitors Emphasizes the fundamental theories, electrochemical mechanism, and its computational viewpoint and discusses recent developments in electrode designing based on nanomaterials, separators,and fabrication of advanced devices and their performances Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He earned a PhD in Physics and Astronomy from the University of Nigeria, Nsukka. His research focused on several areas of Materials Science, from synthesis and characterizations of particles and thin-film materials through chemical routes with emphasis on energy applications. For the last 15 years, he has been working on energy conversion and storage (cathodes, anodes, supercapacitors, solar cells, among others), including novel methods of synthesis, characterization and evaluation of the electrochemical and optical properties. He has published about 180 papers in various international journals and given over 50 talks at various conferences. His h-index is 21 with over 1500 citations and he has served as reviewer for several high impact journals and as an editorial board member. Dr. M.Anusuya, M.Sc., M.Phil., B.Ed., PhD is specialized in Material science, Thin Film Technology, Nano Science, and Crystallography. She is working as a Registrar of Indra Ganesan Group of Institutions, Trichy, Tamilnadu, India. Earlier to this, she served as a Vice-Principal at Trichy Engineering College, Trichy, Tamilnadu, India.. Being an administrator and teacher, with more than 25 years’ experience, for her perpetual excellence in academics she has been recognized with many awards. She has received over 45 awards in Academic and Social Activity. She has published more than 30 research papers in National and International journals, 7 chapters in edited books, 5 patents, presented 50 papers in the conferences and organized more than 200 webinars, both national and internationally. Dr Assumpta C. Nwanya is a Lecturer and a FLAIR (Future Leaders - African Independent Research) Scholar at the Department of Physics and Astronomy, University of Nigeria, Nsukka. She obtained her PhD in 2017 (University of Nigeria, Nsukka) with specialisation in the synthesis of nanostructured materials for applications in photovoltaics and electrochemical energy storage (batteries and supercapacitors) as well as for sensing. She was a Postdoctoral Fellow under the UNESCO-University of South Africa (UNISA) Africa Chair in Nanoscience and Nanotechnology (2018-2020). She is a research Affiliate with the SensorLab, University of the Western Cape Sensor Laboratories, Cape Town, South Africa. Dr Nw

Materials for Sustainable Environmental, Energy, and Bioresource Applications: Proceedings from the International Conference on M2EBA 2023 (Springer Proceedings in Earth and Environmental Sciences)

by Phuong Nguyen-Tri

This proceedings book showcases the latest research and developments in materials sciences and their applications for solving environmental and energy-related challenges. The book features insightful contributions from leading researchers, academics, professionals, and students in the field, who share their expertise, experiences, and perspectives on the key issues and innovations in materials sciences and engineering. The book is helpful to those interested in environmental sustainability, energy efficiency, or bioresource utilization.

Materials for the Hydrogen Economy

by Russell H. Jones George J. Thomas

Hydrogen offers a promising alternative for supplying clean and sustainable energy to meet increasing demands worldwide. However, materials are key to transforming the technology into a viable industry. Materials for the Hydrogen Economy describes the technical challenges and the current efforts in developing materials possessing the properties req

Materials Handbook: A Concise Desktop Reference

by François Cardarelli

The unique and practical Materials Handbook (third edition) provides quick and easy access to the physical and chemical properties of very many classes of materials. Its coverage has been expanded to include whole new families of materials such as minor metals, ferroalloys, nuclear materials, food, natural oils, fats, resins, and waxes. Many of the existing families—notably the metals, gases, liquids, minerals, rocks, soils, polymers, and fuels—are broadened and refined with new material and up-to-date information. Several of the larger tables of data are expanded and new ones added. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, each of twenty classes of materials receives attention in its own chapter. The health and safety issues connected with the useand handling of industrial materials are included. Detailed appendices provide additional information on subjects as diverse as crystallography, spectroscopy, thermochemical data, analytical chemistry, corrosion resistance, and economic data for industrial and hazardous materials. Specific further reading sections and a general bibliography round out this comprehensive guide. The index and tabular format of the book makes light work of extracting what the reader needs to know from the wealth of factual information within these covers. Dr. François Cardarelli has spent many years compiling and editing materials data. His professional expertise and experience combine to make this handbook an indispensable reference tool for scientists and engineers working in numerous fields ranging from chemical to nuclear engineering. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, materials are classified as follows. ferrous metals and their alloys; ferroalloys; common nonferrous metals; less common metals; minor metals; semiconductors and superconductors; magnetic materials; insulators and dielectrics; miscellaneous electrical materials; ceramics, refractories and glasses; polymers and elastomers; minerals, ores and gemstones; rocks and meteorites; soils and fertilizers; construction materials; timbers and woods; fuels, propellants and explosives; composite materials; gases; liquids; food, oils, resin and waxes; nuclear materials. food materials

Materials in Biology and Medicine (Green Chemistry and Chemical Engineering)

by Sunggyu Lee David Henthorn

While the interdisciplinary field of materials science and engineering is relatively new, remarkable developments in materials have emerged for biological and medical applications, from biocompatible polymers in medical devices to the use of carbon nanotubes as drug delivery vehicles. With peer-reviewed chapters written by a select group of academic and industry experts, this comprehensive yet accessible book covers the most advanced materials used in biology and medicine. The book focuses on biomaterials and bioinspired materials, functional and responsive materials, controlling biology with materials, and the development of devices and enabling technologies. It will help readers tackle challenges of novel materials, carry out new process and product development projects, and create new methodologies for applications that enhance the quality of life.

Materials in Energy Conversion, Harvesting, and Storage

by Kathy Lu

First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today's energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.

Materials in Mechanical Extremes

by Neil Bourne

This unified guide brings together the underlying principles, and predictable material responses, that connect metals, polymers, brittle solids and energetic materials as they respond to extreme external stresses. Previously disparate scientific principles, concepts and terminology are combined within a single theoretical framework, across different materials and scales, to provide all the tools necessary to understand, and calculate, the responses of materials and structures to extreme static and dynamic loading. Real-world examples illustrate how material behaviours produce a component response, enabling recognition - and avoidance - of the deformation mechanisms that contribute to mechanical failure. A final synoptic chapter presents a case study of extreme conditions brought about by the infamous Chicxulub impact event. Bringing together simple concepts from diverse fields into a single, accessible, rigourous text, this is an indispensable reference for all researchers and practitioners in materials science, mechanical engineering, physics, physical chemistry and geophysics.

Materials Informatics and Catalysts Informatics: An Introduction

by Keisuke Takahashi Lauren Takahashi

This textbook is designed for students and researchers who are interested in materials and catalysts informatics with little to no prior experience in data science or programming languages. Starting with a comprehensive overview of the concept and historical context of materials and catalysts informatics, it serves as a guide for establishing a robust materials informatics environment. This essential resource is designed to teach vital skills and techniques required for conducting informatics-driven research, including the intersection of hardware, software, programming, machine learning within the field of data science and informatics. Readers will explore fundamental programming techniques, with a specific focus on Python, a versatile and widely-used language in the field. The textbook explores various machine learning techniques, equipping learners with the knowledge to harness the power of data science effectively. The textbook provides Python code examples, demonstrating materials informatics applications, and offers a deeper understanding through real-world case studies using materials and catalysts data. This practical exposure ensures readers are fully prepared to embark on their informatics-driven research endeavors upon completing the textbook. Instructors will also find immense value in this resource, as it consolidates the skills and information required for materials informatics into one comprehensive repository. This streamlines the course development process, significantly reducing the time spent on creating course material. Instructors can leverage this solid foundation to craft engaging and informative lecture content, making the teaching process more efficient and effective.

Materials Informatics II: Software Tools and Databases (Challenges and Advances in Computational Chemistry and Physics #40)

by Kunal Roy Arkaprava Banerjee

This contributed volume explores the application of machine learning in predictive modeling within the fields of materials science, nanotechnology, and cheminformatics. It covers a range of topics, including electronic properties of metal nanoclusters, carbon quantum dots, toxicity assessments of nanomaterials, and predictive modeling for fullerenes and perovskite materials. Additionally, the book discusses multiscale modeling and advanced decision support systems for nanomaterial risk management, while also highlighting various machine learning tools, databases, and web platforms designed to predict the properties of materials and molecules. It is a comprehensive guide and a great tool for researchers working at the intersection of machine learning and material sciences.

Materials Informatics III: Polymers, Solvents and Energetic Materials (Challenges and Advances in Computational Chemistry and Physics #41)

by Kunal Roy Arkaprava Banerjee

This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure–property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.

Materials Innovations and Solutions in Science and Technology: With a Focus on Tropical Plant Biomaterials (Advanced Structured Materials #173)

by Azman Ismail Fatin Nur Zulkipli Mohd Amran Mohd Daril Andreas Öchsner

This book offers innovative ideas and solutions from tropical fruits and crops for engineering problems. It covers a wide range of topics related to science, engineering, and technologies. The topics shared in this book enable practitioners and innovators to develop subsequent novel ideas and methods for solving engineering and technological problems for organizations to sustain its operation in global challenges.

Materials Interaction with Femtosecond Lasers: Theory and Ultra-Large-Scale Simulations of Thermal and Nonthermal Pheomena

by Bernd Bauerhenne

This book presents a unified view of the response of materials as a result of femtosecond laser excitation, introducing a general theory that captures both ultrashort-time non-thermal and long-time thermal phenomena. It includes a novel method for performing ultra-large-scale molecular dynamics simulations extending into experimental and technological spatial dimensions with ab-initio precision. For this, it introduces a new class of interatomic potentials, constructed from ab-initio data with the help of a self-learning algorithm, and verified by direct comparison with experiments in two different materials — the semiconductor silicon and the semimetal antimony.In addition to a detailed description of the new concepts introduced, as well as giving a timely review of ultrafast phenomena, the book provides a rigorous introduction to the field of laser–matter interaction and ab-initio description of solids, delivering a complete and self-contained examination of the topic from the very first principles. It explains, step by step from the basic physical principles, the underlying concepts in quantum mechanics, solid-state physics, thermodynamics, statistical mechanics, and electrodynamics, introducing all necessary mathematical theorems as well as their proofs. A collection of appendices provide the reader with an appropriate review of many fundamental mathematical concepts, as well as important analytical and numerical parameters used in the simulations.

Materials Modelling: From Theory to Technology

by English

In Materials Modelling: From Theory to Technology, a distinguished collection of authors has been assembled to celebrate the 60th birthday of Dr. R. Bullough, FRS and honor his contribution to the subject over the past 40 years.The volume explores subjects that have implications in a wide range of technologies, focusing on how basic research can be applied to real problems in science and engineering. Linking theory and technology, the book progresses from the theoretical background to current and future practical applications of modeling. Accessible to a diverse audience, it requires little specialist knowledge beyond a physics degree. The book is useful reading for postgraduates and researchers in condensed matter, nuclear engineering, and physical metallurgy, in addition to workers in R&D laboratories and the high technology industry.

Materials Phase Change PDE Control & Estimation: From Additive Manufacturing to Polar Ice (Systems & Control: Foundations & Applications)

by Shumon Koga Miroslav Krstic

This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries.A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research.Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.

Refine Search

Showing 46,601 through 46,625 of 83,299 results