- Table View
- List View
Mathematical Methods for Physics: 45th anniversary edition
by H.W. Wyld Gary PowellFrom classical mechanics and classical electrodynamics to modern quantum mechanics many physical phenomena are formulated in terms of similar partial differential equations while boundary conditions determine the specifics of the problem. This 45th anniversary edition of the advanced book classic Mathematical Methods for Physics demonstrates how many physics problems resolve into similar inhomogeneous partial differential equations and the mathematical techniques for solving them. The text has three parts: Part I establishes solving the homogenous Laplace and Helmholtz equations in the three main coordinate systems, rectilinear, cylindrical, and spherical and develops the solution space for series solutions to the Sturm-Liouville equation, indicial relations, and the expansion of orthogonal functions including spherical harmonics and Fourier series, Bessel, and Spherical Bessel functions. Many examples with figures are provided including electrostatics, wave guides and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, and plane and spherical waves. In Part II the inhomogeneous equations are addressed where source terms are included for Poisson's equation, the wave equation, and the diffusion equation. Coverage includes many examples from averaging approaches for electrostatics and magnetostatics, from Green function solutions for time independent and time dependent problems, and from integral equation methods. In Part III complex variable techniques are presented for solving integral equations involving Cauchy Residue theory, contour methods, analytic continuation, and transforming the contour; for addressing dispersion relations; for revisiting special functions in the complex plane; and for transforms in the complex plane including Green’s functions and Laplace transforms.Key Features: Mathematical Methods for Physics creates a strong, solid anchor of learning and is useful for reference Lecture note style suitable for advanced undergraduate and graduate students to learn many techniques for solving partial differential equations with boundary conditions Many examples across various subjects of physics in classical mechanics, classical electrodynamics, and quantum mechanics Updated typesetting and layout for improved clarity This book, in lecture note style with updated layout and typesetting, is suitable for advanced undergraduate, graduate students, and as a reference for researchers. It has been edited and carefully updated by Gary Powell.
Mathematical Methods in Chemical and Biological Engineering
by Binay Kanti DuttaMathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.
Mathematical Methods in Elasticity Imaging
by Josselin Garnier Hyundae Lee Habib Ammari Hyeonbae Kang Abdul Wahab Elie BretinThis book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
Mathematical Methods in Engineering: Theoretical Aspects (Nonlinear Systems and Complexity #23)
by Kenan Taş Dumitru Baleanu J. A. MachadoThis book collects chapters dealing with some of the theoretical aspects needed to properly discuss the dynamics of complex engineering systems. The book illustrates advanced theoretical development and new techniques designed to better solve problems within the nonlinear dynamical systems. Topics covered in this volume include advances on fixed point results on partial metric spaces, localization of the spectral expansions associated with the partial differential operators, irregularity in graphs and inverse problems, Hyers-Ulam and Hyers-Ulam-Rassias stability for integro-differential equations, fixed point results for mixed multivalued mappings of Feng-Liu type on Mb-metric spaces, and the limit q-Bernstein operators, analytical investigation on the fractional diffusion absorption equation.
Mathematical Methods in Engineering: Applications in Dynamics of Complex Systems (Nonlinear Systems and Complexity #24)
by Kenan Taş Dumitru Baleanu J. A. MachadoThis book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.
Mathematical Methods in Physics and Engineering (Dover Books on Physics)
by John W. DettmanIntended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.
Mathematical Methods in Robust Control of Linear Stochastic Systems
by Vasile Dragan Toader Morozan Adrian-Mihail StoicaThis second edition of Mathematical Methods in the Robust Control of Linear Stochastic Systems includes a large number of recent results in the control of linear stochastic systems. More specifically, the new results presented are: - A unified and abstract framework for Riccati type equations arising in the stochastic control - Stability and control problems for systems perturbed by homogeneous Markov processes with infinite number of states - Mixed H2 / H∞ control problem and numerical procedures - Linear differential equations with positive evolution on ordered Banach spaces with applications for stochastic systems including both multiplicative white noise and Markovian jumps represented by a Markov chain with countable infinite set of states - Kalman filtering for stochastic systems subject both to state dependent noise and Markovian jumps - H∞ reduced order filters for stochastic systems The book will appeal to graduate students, researchers in advanced control engineering, finance, mathematical systems theory, applied probability and stochastic processes, and numerical analysis. From Reviews of the First Edition: This book is concerned with robust control of stochastic systems. One of the main features is its coverage of jump Markovian systems. . . . Overall, this book presents results taking into consideration both white noise and Markov chain perturbations. It is clearly written and should be useful for people working in applied mathematics and in control and systems theory. The references cited provide further reading sources. (George Yin, Mathematical Reviews, Issue 2007 m) This book considers linear time varying stochastic systems, subjected to white noise disturbances and system parameter Markovian jumping, in the context of optimal control . . . robust stabilization, and disturbance attenuation. . . . The material presented in the book is organized in seven chapters. . . . The book is very well written and organized. . . . is a valuable reference for all researchers and graduate students in applied mathematics and control engineering interested in linear stochastic time varying control systems with Markovian parameter jumping and white noise disturbances. (Zoran Gajic, SIAM Review, Vol. 49 (3), 2007)
Mathematical Methods in the Physical Sciences (Third Edition)
by Mary L. BoasNow in its third edition, Mathematical Concepts in the Physical Sciences, 3rd Edition provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book is intended for students who have had a two-semester or three-semester introductory calculus course. Its purpose is to help students develop, in a short time, a basic competence in each of the many areas of mathematics needed in advanced courses in physics, chemistry, and engineering. Students are given sufficient depth to gain a solid foundation (this is not a recipe book). At the same time, they are not overwhelmed with detailed proofs that are more appropriate for students of mathematics. The emphasis is on mathematical methods rather than applications, but students are given some idea of how the methods will be used along with some simple applications.
Mathematical Methods of Many-Body Quantum Field Theory (Chapman & Hall/CRC Research Notes in Mathematics Series)
by Detlef LehmannMathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theo
Mathematical Methods using Python: Applications in Physics and Engineering
by Vasilis Pagonis Christopher Wayne KulpThis advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc.An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses.Key Features:· A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses.· Uses examples and models from physical and engineering systems, to motivate the mathematics being taught.· Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).Vasilis Pagonis is Professor of Physics Emeritus at McDaniel College, Maryland, USA. His research area is applications of thermally and optically stimulated luminescence. He taught courses in mathematical physics, classical and quantum mechanics, analog and digital electronics and numerous general science courses. Dr. Pagonis’ resume lists more than 200 peer-reviewed publications in international journals. He is currently associate editor of the journal Radiation Measurements. He is co-author with Christopher Kulp of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020). He has also co-authored four graduate-level textbooks in the field of luminescence dosimetry, and most recently published the book “Luminescence Signal analysis using Python” (Springer, 2022).Christopher Kulp is the John P. Graham Teaching Professor of Physics at Lycoming College. He has been teaching undergraduate physics at all levels for 20 years. Dr. Kulp’s research focuses on modelling complex systems, time series analysis, and machine learning. He has published 30 peer-reviewed papers in international journals, many of which include student co-authors. He is also co-author of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020).
Mathematical Modeling
by Christof Eck Harald Garcke Peter KnabnerThe main aim of this paper is to present some new and general results, ap plicable to the the equations of two phase flow, as formulated in geothermal reservoir engineering. Two phase regions are important in many geothermal reservoirs, especially at depths of order several hundred metres, where ris ing, essentially isothermal single phase liquid first begins to boil. The fluid then continues to rise, with its temperature and pressure closely following the saturation (boiling) curve appropriate to the fluid composition. Perhaps the two most interesting theoretical aspects of the (idealised) two phase flow equations in geothermal reservoir engineering are that firstly, only one component (water) is involved; and secondly, that the densities of the two phases are so different. This has led to the approximation of ignoring capillary pressure. The main aim of this paper is to analyse some of the consequences of this assumption, especially in relation to saturation changes within a uniform porous medium. A general analytic treatment of three dimensional flow is considered. Pre viously, three dimensional modelling in geothermal reservoirs have relied on numerical simulators. In contrast, most of the past analytic work has been restricted to one dimensional examples.
Mathematical Modeling and Applications in Nonlinear Dynamics
by Albert C.J. Luo Hüseyin MerdanThe book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.
Mathematical Modeling and Control in Life and Environmental Sciences: Regional Control Problems (Modeling and Simulation in Science, Engineering and Technology)
by Sebastian Aniţa Vincenzo Capasso Simone ScacchiThis monograph explores the use of mathematical modeling and control theory in a variety of contemporary challenges in mathematical biology and environmental sciences. Emphasizing an approach of learning by doing, the authors focus on a set of significant case studies emerging from real-world problems and illustrate how mathematical techniques and computational experiments can be employed in the search for sustainable solutions.The following topics are extensively discussed:Eradicability and control of a paradigmatic epidemic model, with a view to the existence of endemic states, their stability, and the existence of travelling wavesA spatially structured epidemic model concerning malaria as an example of vector-borne epidemicsOptimal harvesting problems for space-structured and age-structured population dynamicsControlling epidemics in agriculture due to pest insectsThe role of predators as a possible biocontrol agent of epidemics in agricultureControl by taxation of the environmental pollution produced by human activitiesThe originality of this text is in its leitmotif – regional control – along the principle of “Think Globally, Act Locally.” Indeed, for example, in many real spatially structured ecosystems, it is practically impossible to control the relevant system by global interventions in the whole habitat.Proofs are given whenever they may serve as a guide to the introduction of new concepts. Each chapter includes a comprehensive description of the numerical methods used for the computational experiments, and MATLAB© codes for many of the numerical simulations are available for download. Several challenging open problems are also provided to stimulate future research.This text is aimed at mathematicians, engineers, and other scientists working in areas such as biology, medicine, and economics. Graduate and advanced undergraduate students of a quantitative subject related to the analysis and applications of dynamical systems and their control will also find it to be a valuable resource.
Mathematical Modeling and Intelligent Control for Combating Pandemics (Springer Optimization and Its Applications #203)
by Zakia Hammouch Mohamed Lahby Dumitru BaleanuThe contributions in this carefully curated volume, present cutting-edge research in applied mathematical modeling for combating COVID-19 and other potential pandemics. Mathematical modeling and intelligent control have emerged as powerful computational models and have shown significant success in combating any pandemic. These models can be used to understand how COVID-19 or other pandemics can spread, analyze data on the incidence of infectious diseases, and predict possible future scenarios concerning pandemics. This book also discusses new models, practical solutions, and technological advances related to detecting and analyzing COVID-19 and other pandemics based on intelligent control systems that assist decision-makers, managers, professionals, and researchers. Much of the book focuses on preparing the scientific community for the next pandemic, particularly the application of mathematical modeling and intelligent control for combating the Monkeypox virus and Langya Henipavirus.
Mathematical Modeling and Numerical Techniques in Drying Technology
by Ian Turner Arun S. MujumdarOffers information necessary for the development of mathematical models and numerical techniques to solve specific drying problems. The book addresses difficult issues involved with the drying equations of numerical analysis, including mesh generation, discretinization strategies, the nonlinear equation set and the linearized algebraic system, convergance criteria, time step control, experimental validation, optimum methods of visualization results, and more.
Mathematical Modeling and Optimization of Complex Structures
by Pekka Neittaanmäki Sergey Repin Tero TuovinenThis volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimization algorithms; * Optimal control problems with distributed and discrete control; * Shape optimization and shape design problems in science and engineering; * Sensitivity analysis and parameters optimization of complex systems.
Mathematical Modeling and Scale-Up of Liquid Chromatography
by Tingyue GuTingyue Gu's second edition provides a comprehensive set of nonlinear multicomponent liquid chromatography (LC) models for various forms of LC, such as adsorption, size exclusion, ion-exchange, reversed-phase, affinity, isocratic/gradient elution and axial/radial flow LC. Much has advanced since the first edition of this book and the author's software, described here, is now used for teaching and research in 32 different countries. This book comes together with a complete software package with graphical user interface for personal computers, offered free for academic applications. Additionally, this book provides detailed methods for parameter estimation of mass transfer coefficients, bed voidage, particle porosity and isotherms. The author gives examples of how to use the software for predicitons and scale-up. In contrast to the first edition, authors do not need to deal with complicated math. Instead, they focus on how to obtain a few parameters for simulation and how to compare simulation results with experimental data. After reading the detailed descriptions in the book, a reader is able to use the simulation software to investigate chromatographic behavior without doing actual experiments. This book is aimed at readers who are interested in learning about LC behaviors and at those who want to scale up LC for preparative- and large-scale applications. Both academic personnel and industrial practitioners can benefit from the use of the book. This new edition includes: - New models and software for pellicular (cored) beads in liquid chromatography - Introduction of user-friendly software (with graphical user interface) - Detailed descriptions on how to use the software - Step-by-step instructions on parameter estimation for the models - New mass-transfer correlations for parameter estimation - Experimental methods for parameter estimation - Several actual examples using the model for product development and scale-up - Updated literature review
Mathematical Modeling and Validation in Physiology
by Franz Kappel Jerry J. Batzel Mostafa BacharThis volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.
A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems (Nonlinear Systems and Complexity #22)
by Elbert E. MacauThis book collects recent developments in nonlinear and complex systems. It provides up-to-date theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers symmetry groups, conservation laws, risk reduction management, barriers in Hamiltonian systems, and synchronization and chaotic transient. Illustrating mathematical modeling applications to nonlinear physics and nonlinear engineering, the book is ideal for academic and industrial researchers concerned with machinery and controls, manufacturing, and controls.· Introduces new concepts for understanding and modeling complex systems;· Explains risk reduction management in complex systems;· Examines the symmetry group approach to understanding complex systems;· Illustrates the relation between transient chaos and crises.
Mathematical Modeling for Complex Fluids and Flows
by Michel Deville Thomas B. GatskiMathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
Mathematical Modeling for Genes to Collective Cell Dynamics (Theoretical Biology)
by Tetsuji TokihiroThis book describes the dynamics of biological cells and their mathematical modeling. The topics cover the dynamics of RNA polymerases in transcription, construction of vascular networks in angiogenesis, and synchronization of cardiomyocytes. Statistical analysis of single cell dynamics and classification of proteins by mathematical modeling are also presented. The book provides the most up-to-date information on both experimental results and mathematical models that can be used to analyze cellular dynamics. Novel experimental results and approaches to understand them will be appealing to the readers. Each chapter contains 1) an introductory description of the phenomenon, 2) explanations about the mathematical technique to analyze it, 3) new experimental results, 4) mathematical modeling and its application to the phenomenon. Elementary introductions for the biological phenomenon and mathematical approach to them are especially useful for beginners. The importance of collaboration between mathematics and biological sciences has been increasing and providing new outcomes. This book gives good examples of the fruitful collaboration between mathematics and biological sciences.
Mathematical Modeling in Biology: A Research Methods Approach (Chapman & Hall/CRC Mathematical Biology Series)
by Shandelle M. Henson James L. HaywardMathematical Modeling in Biology: A Research Methods Approach is a textbook written primarily for advanced mathematics and science undergraduate students and graduate-level biology students. Although the applications center on ecology, the expertise of the authors, the methodology can be imported to any other science, including social science and economics. The aim of the book, beyond being a useful aid to teaching and learning the core modeling skills needed for mathematical biology, is to encourage students to think deeply and clearly about the meaning of mathematics in science and to learn significant research methods. Most importantly, it is hoped that students will experience some of the excitement of doing research. Features Minimal pre-requisites beyond a solid background in calculus, such as a calculus I course. Suitable for upper division mathematics and sciences students and graduate-level biology students. Provides sample MATLAB codes and instruction in Appendices along with datasets available on https://bit.ly/3fcLF3D
Mathematical Modeling in Chemical Engineering
by Anders Rasmuson Bengt Andersson Louise Olsson Ronnie Andersson Anders Rasmuson Bengt Andersson Louise OlssonA solid introduction to mathematical modeling for a range of chemical engineering applications, covering model formulation, simplification and validation. It explains how to describe a physical/chemical reality in mathematical language and how to select the type and degree of sophistication for a model. Model reduction and approximation methods are presented, including dimensional analysis, time constant analysis and asymptotic methods. An overview of solution methods for typical classes of models is given. As final steps in model building, parameter estimation and model validation and assessment are discussed. The reader is given hands-on experience of formulating new models, reducing the models and validating the models. The authors assume the knowledge of basic chemical engineering, in particular transport phenomena, as well as basic mathematics, statistics and programming. The accompanying problems, tutorials, and projects include model formulation at different levels, analysis, parameter estimation and numerical solution.
Mathematical Modeling in Mechanics of Granular Materials
by Holm Altenbach Oxana Sadovskaya Vladimir SadovskiiThis monograph contains original results in the field of mathematical and numerical modeling of mechanical behavior of granular materials and materials with different strengths. It proposes new models helping to define zones of the strain localization. The book shows how to analyze processes of the propagation of elastic and elastic-plastic waves in loosened materials, and constructs models of mixed type, describing the flow of granular materials in the presence of quasi-static deformation zones. In a last part, the book studies a numerical realization of the models on multiprocessor computer systems. The book is intended for scientific researchers, lecturers of universities, post-graduates and senior students, who specialize in the field of the deformable materials mechanics, mathematical modeling and adjacent fields of applied and calculus mathematics.
Mathematical Modeling in Renal Physiology
by Anita T. Layton Aurélie EdwardsWith the availability of high speed computers and advances in computational techniques, the application of mathematical modeling to biological systems is expanding. This comprehensive and richly illustrated volume provides up-to-date, wide-ranging material on the mathematical modeling of kidney physiology, including clinical data analysis and practice exercises. Basic concepts and modeling techniques introduced in this volume can be applied to other areas (or organs) of physiology. The models presented describe the main homeostatic functions performed by the kidney, including blood filtration, excretion of water and salt, maintenance of electrolyte balance and regulation of blood pressure. Each chapter includes an introduction to the basic relevant physiology, a derivation of the essential conservation equations and then a discussion of a series of mathematical models, with increasing level of complexity. This volume will be of interest to biological and mathematical scientists, as well as physiologists and nephrologists, who would like an introduction to mathematical techniques that can be applied to renal transport and function. The material is written for students who have had college-level calculus, but can be used in modeling courses in applied mathematics at all levels through early graduate courses.