Browse Results

Showing 46,726 through 46,750 of 82,321 results

Mechanical Damage in Fresh Horticultural Produce: Measurement, Analysis and Control

by Pankaj B. Pathare Umezuruike Linus Opara

This book includes the impact, compression, vibration studies, and destructive and nondestructive techniques for bruise measurement. It is essential to detect bruises in the early stages of their formation and conduct a quantitative analysis of the degree of bruising, to ensure the accurate grading of bruised fruits and vegetables and reduce unnecessary economic losses. Bruise damage occurring between the point of harvest and consumption contributes the most to the decrease in fruit quality, reducing the market value and ultimately leading to significant reductions in potential revenue. SDG 12.3 aims to “by 2030, halve per capita global food waste at the retail and consumer levels and reduce food losses along production and supply chains, including post-harvest losses.” This book presents recent technological developments in bruise measurement, detection, and analysis of fresh horticultural produce. Given the rising demand for rapid and accurate methods of quality measurement in the horticultural produce industry, this book covers destructive and nondestructive techniques for bruise measurement. Selected applications of different nondestructive methods for various fresh produce commodities are also included. This book will interest graduate and undergraduate students, researchers, academics and engineers working in different aspects of the mechanical damage affected by postharvest handling practices, professionals working in the governments, and other authorities related to fresh horticultural produce quality, regulations, and safety.

Mechanical Design

by Antonino Risitano

With a focus on the Italian School of machine design as founded by R. Giovannozzi of Turin Polytechnic, this book provides a complete picture of the necessary components of design, along with the necessary instruments for implementation. It also explains the method of the compact modeling analysis of the mechanical problem. The book provides details from simple fundamentals, to explanation of the design of traditional mechanical components. Topics covered include the methodological statement of engineering, properties of engineering materials, and the design of mechanical components and systems. Case studies are included for the different themes.

Mechanical Energy Storage for Renewable and Sustainable Energy Resources (Advances in Science, Technology & Innovation)

by Abdul Hai Alami

The available literature on energy storage technologies in general, and mechanical energy storage in particular, is lacking in terms of both quantity and quality. This edited volume focuses on novel (yet uncomplicated) ideas that are currently part of the Energy Storage curriculum at the University of Sharjah, UAE. These techniques have been extensively researched and their prototypes are central to the undergraduate Energy Storage Lab that is associated with the course. Although ideally suited for wind energy storage, the techniques described are also suitable for renewable energy storage in general, and offer high two-way efficiency ratings.

Mechanical Engineering Design: Third Edition (Mcgraw-hill Series In Mechanical Engineering)

by Ansel C. Ugural

Mechanical Engineering Design, Third Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. Updated throughout, it outlines basic concepts and provides the necessary theory to gain insight into mechanics with numerical methods in design. Divided into three sections, the text presents background topics, addresses failure prevention across a variety of machine elements, and covers the design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included. Features: Places a strong emphasis on the fundamentals of mechanics of materials as they relate to the study of mechanical design Furnishes material selection charts and tables as an aid for specific uses Includes numerous practical case studies of various components and machines Covers applied finite element analysis in design, offering this useful tool for computer-oriented examples Addresses the ABET design criteria in a systematic manner Presents independent chapters that can be studied in any order Introduces optional MATLAB® solutions tied to the book and student learning resources Mechanical Engineering Design, Third Edition allows students to gain a grasp of the fundamentals of machine design and the ability to apply these fundamentals to various new engineering problems.

Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments: From Classical Approaches To Some Recent Developments

by Christian Gogu

Considering the uncertainties in mechanical engineering in order to improve the performance of future products or systems is becoming a competitive advantage, sometimes even a necessity, when seeking to guarantee an increasingly high safety requirement. Mechanical Engineering in Uncertainties deals with modeling, quantification and propagation of uncertainties. It also examines how to take into account uncertainties through reliability analyses and optimization under uncertainty. The spectrum of the methods presented ranges from classical approaches to more recent developments and advanced methods. The methodologies are illustrated by concrete examples in various fields of mechanics (civil engineering, mechanical engineering and fluid mechanics). This book is intended for both (young) researchers and engineers interested in the treatment of uncertainties in mechanical engineering.

Mechanical Engineers' Handbook, Energy and Power

by Myer Kutz

The engineer's ready reference for mechanical power and heat Mechanical Engineer's Handbook provides the most comprehensive coverage of the entire discipline, with a focus on explanation and analysis. Packaged as a modular approach, these books are designed to be used either individually or as a set, providing engineers with a thorough, detailed, ready reference on topics that may fall outside their scope of expertise. Each book provides discussion and examples as opposed to straight data and calculations, giving readers the immediate background they need while pointing them toward more in-depth information as necessary. Volume 4: Energy and Power covers the essentials of fluids, thermodynamics, entropy, and heat, with chapters dedicated to individual applications such as air heating, cryogenic engineering, indoor environmental control, and more. Readers will find detailed guidance toward fuel sources and their technologies, as well as a general overview of the mechanics of combustion. No single engineer can be a specialist in all areas that they are called on to work in the diverse industries and job functions they occupy. This book gives them a resource for finding the information they need, with a focus on topics related to the productions, transmission, and use of mechanical power and heat. Understand the nature of energy and its proper measurement and analysis Learn how the mechanics of energy apply to furnaces, refrigeration, thermal systems, and more Examine the and pros and cons of petroleum, coal, biofuel, solar, wind, and geothermal power Review the mechanical parts that generate, transmit, and store different types of power, and the applicable guidelines Engineers must frequently refer to data tables, standards, and other list-type references, but this book is different; instead of just providing the answer, it explains why the answer is what it is. Engineers will appreciate this approach, and come to find Volume 4: Energy and Power an invaluable reference.

Mechanical Fatigue of Metals: Experimental and Simulation Perspectives (Structural Integrity #7)

by José A.F.O. Correia Abílio M.P. De Jesus António Augusto Fernandes Rui Calçada

This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches. Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.

Mechanical Integration of Plant Cells and Plants

by Przemyslaw Wojtaszek

Chemical reactions and interactions between molecules are commonly considered the basis of life, and thus the biochemical nature of cells and organisms is relatively well recognized. Research conducted in recent years, however, increasingly indicates that physical forces profoundly affect the functioning of life at all levels of its organization. To detect and to respond to such forces, plant cells and plants need to be structured mechanically. This volume focuses on mechanical aspects of plant life. It starts with a consideration of the mechanical integration of supracellular structures and mechanical properties of cellular building blocks to show how the structural integrity of plant cells is achieved and maintained during growth and development. The following chapters reveal how the functioning of integrated plant cells contributes to the mechanical integration of plants, and how the latter are able to detect physical stimuli and to reorganize their own cells in response to them. The mechanical aspects of plant responses to stresses are also presented. Finally, all these aspects are placed in an evolutionary context.

Mechanical Integrity and Risk-Based Inspection of Process Equipment, Piping and Pipelines (Structural Integrity #30)

by Jorge Luis Gonzalez-Velazquez

This book explores Mechanical Integrity (MI) and Risk-Based Inspection (RBI) methodologies, specifically tailored for professionals in chemical, petrochemical, and petroleum refining plants. It starts with foundational aspects of equipment and pipe design and manufacturing within the process industry, followed by an introduction to prevalent damage mechanisms in metal components during service. The book then delves into the general methodology for mechanical integrity analysis, covering remaining life estimation and methods for assessing common defects found in in-service components. It further introduces the principles and overall methodology of Risk-Based Inspection, detailing approaches for evaluating Probability of Failure and Consequences, along with the application of risk matrices to formulate Inspection-Based Risk (IBR) plans. Lastly, it directs attention to the practical implementation of MI and IBR methodologies for managing the integrity of pipelines transporting liquid and gaseous hydrocarbons, aligned with API codes and ASME standards, offering a comprehensive example illustrating the development of an integrity management plan for a real-life pipeline. Through this structured approach, professionals can gain actionable strategies and insights essential for ensuring the safety and reliability of industrial plants and pipelines.

Mechanical Life Cycle Handbook: Good Environmental Design and Manufacturing (Mechanical Engineering)

by Mahendra S. Hundal

Explains how Design for the Environment (SFE) and Life Cycle Engineering (LCE) processes may be integrated into business an dmanufacturing practices. Examines major environmental laws and regulations in the U.S. and Europe, qualitative and quantitative analyses of ""green design"" decision variables, and heuristic search programs for a proactive future in ecological improvement.

The Mechanical Mind

by Tim Crane

This edition has been fully revised and updated, and includes a new chapter on consciousness and a new section on modularity. There are also guides for further reading, and a new glossary of terms such as mentalese, connectionism, and the homunculus fallacy.

The Mechanical Mind: A Philosophical Introduction to Minds, Machines and Mental Representation

by Tim Crane

How can the human mind represent the external world? What is thought, and can it be studied scientifically? Should we think of the mind as a kind of machine? Is the mind a computer? Can a computer think? Tim Crane sets out to answer these questions and more in a lively and straightforward way, presuming no prior knowledge of philosophy or related disciplines. Since its first publication, The Mechanical Mind has introduced thousands of people to some of the most important ideas in contemporary philosophy of mind. Crane explains the fundamental ideas that cut across philosophy of mind, artificial intelligence and cognitive science: what the mind-body problem is; what a computer is and how it works; what thoughts are and how computers and minds might have them. He examines different theories of the mind from dualist to eliminativist, and questions whether there can be thought without language and whether the mind is subject to the same causal laws as natural phenomena. The result is a fascinating exploration of the theories and arguments surrounding the notions of thought and representation. This third edition has been fully revised and updated, and includes a wholly new chapter on externalism about mental content and the extended and embodied mind. There is a stronger emphasis on the environmental and bodily context in which thought occurs. Many chapters have been reorganised to make the reader's passage through the book easier. The book now contains a much more detailed guide to further reading, and the chronology and the glossary of technical terms have also been updated. The Mechanical Mind is accessible to anyone interested in the mechanisms of our minds, and essential reading for those studying philosophy of mind, philosophy of psychology, or cognitive psychology.

Mechanical Properties of Aging Soft Tissues

by Brian Derby Riaz Akhtar

Exploring the structure and mechanics of aging soft tissues, this edited volume presents authoritative reviews from leading experts on a range of tissues including skin, tendons, vasculature and plantar soft tissues. It provides an overview of in vivo and in vitro measurement techniques including state-of-the-art methodologies, as well as focusing on the structural changes that occur within the main components of these tissues resulting in detrimental mechanical property changes. It also highlights the current challenges of this field, and offers an insight into future developments. Age-related changes in the mechanical properties of soft tissues have a profound effect on human morbidity and mortality, and with changing global demographics, there is growing interest in this area. There has been increasing interest in robustly characterizing these mechanical changes to develop structure-property relationships, and growing awareness of the need for enhanced predictive models for computational simulations. This book seeks to address the challenges involved in applying these engineering techniques to reliably characterize these tissues. Focusing on a wide range of tissues and presenting cutting-edge techniques, this book provides an invaluable reference to academics and researchers in a range of disciplines including biomechanics, materials science, tissue engineering, life sciences and biomedicine.

Mechanical Properties of Cementitious Materials at Microscale

by Ya Wei Siming Liang Weikang Kong

This book provides information on characterizing the microstructure and mechanical properties of cementitious materials at microscale. Specifically, with the intention to provide the methods of preparing the samples for the micro-scale mechanical testing, to address the techniques for measuring and analyzing the elastic modulus, the stiffness, and the fracture toughness of cementitious materials at micro scale by instrumented indentation, to describe a method for measuring and interpreting creep behavior of cementitious materials at micro scale, and to demonstrate the homogenization method for obtaining the mechanical properties of cementitious materials across scales. The information in this book is helpful to a wide readership in the field of civil engineering and materials science working with cementitious materials and other composite materials.

Mechanical Properties of Ceramics

by Joshua Pelleg

This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated techniques to produce a large variety of ceramic material. The chapters of this volume are ordered to help students with their laboratory experiments and guide their observations in parallel with lectures based on the current text. Thus, the first chapter is devoted to mechanical testing A chapter of ductile and superplastic ceramic is added to emphasize their role in modern ceramics (chapter 2). These are followed by the theoretical basis of the subject. Various aspects of the mechanical properties are discussed in the following chapters, among them, strengthening mechanisms, time dependent and cyclic deformation of ceramics. Many practical illustrations are provided representing various observations encountered in actual ceramic-structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included in this textbook to provide a broad basis for further studying the subject The work also contains a unique chapter on a topic not discussed in other textbooks on ceramics concerning nanosized ceramics. This work will also be useful as a reference for materials scientists, not only to those who specialize in ceramics.

Mechanical Properties of Engineered Materials

by Wole Soboyejo

Featuring in-depth discussions on tensile and compressive properties, shear properties, strength, hardness, environmental effects, and creep crack growth, "Mechanical Properties of Engineered Materials" considers computation of principal stresses and strains, mechanical testing, plasticity in ceramics, metals, intermetallics, and polymers, materials selection for thermal shock resistance, the analysis of failure mechanisms such as fatigue, fracture, and creep, and fatigue life prediction. It is a top-shelf reference for professionals and students in materials, chemical, mechanical, corrosion, industrial, civil, and maintenance engineering; and surface chemistry.

Mechanical Properties of Human Tissues (Materials Horizons: From Nature to Nanomaterials)

by Arnab Chanda Gurpreet Singh

This monograph brings forth biomechanical research methods and outcomes on human tissue experiments such as those of the brain and the heart under a single umbrella. Different mechanical characterization techniques employed in human tissue property estimation are presented in detail. The contents also focus on a hyperelastic constitutive model (e.g., Mooney-Rivlin, Ogden) for both isotropic and anisotropic tissue characterization. It also discusses energy dissipation in soft tissues and associated viscoelasticity. Human tissues, including skin, muscles, connective tissues, and tissues in all functional organs are listed and their mechanical properties are presented in detail. These tissue properties are indispensable for computational modeling of biological systems, validation of biomechanical tissue testing, medical simulation through development of artificial phantoms and surrogates, and testing of medical devices and interventions. This book will serve as a key reference for research in tissue engineering & biomedical engineering, medical simulation, biomechanics, finite element modeling of biological systems, biomaterials, biotechnology, implant and medical device development, and healthcare wearables.

Mechanical Properties of Metallic Composites (Materials Engineering)

by Shojiro Ochiai

Provides coverage of dispersion-hardened and fibre-reinforced alloys, addressing principal mechanisms, processing and applications. Mechanical behaviour based on dislocation theory and elastic-plastic mechanics is dealt with and data on advanced composites are provided.

Mechanical Properties of Polymers based on Nanostructure and Morphology

by G. H. Michler F. J. Baltá-Calleja

The improvement of strength and durability in polymers has implications relevant to industrial, medical, and household applications. Enhanced by the improved knowledge of the interactions between complex hierarchical structures and functional requirements, Mechanical Properties of Polymers Based on Nanostructure and Morphology focuses on new polyme

Mechanical Properties of Polymers Measured through AFM Force-Distance Curves

by Brunero Cappella

This Springer Laboratory volume is a practical guide for scientists and students dealing with the measurement of mechanical properties of polymers at the nanoscale through AFM force-distance curves. In the first part of the book the reader will find a theoretical introduction about atomic force microscopy, focused on force-distance curves, and mechanical properties of polymers. The discussion of several practical issues concerning the acquisition and the interpretation of force-distance curves will help scientists starting to employ this technique. The second part of the book deals with the practical measurement of mechanical properties of polymers by means of AFM force-distance curves. Several "hands-on" examples are illustrated in a very detailed manner, with particular attention to the sample preparation, data analysis, and typical artefacts. This section gives a complete overview about the qualitative characterization and quantitative determination of the mechanical properties of homogeneous polymer samples, polymer brushes, polymer thin films, confined polymer samples, model blends and microstructured polymer blends through AFM force-distance curves. The book also introduces to new approaches and measurement techniques, like creep compliance and force modulation measurements, pointing out approximations, limitations and issues requiring further confirmation.

Mechanical Properties of Solid Polymers

by I. M. Ward J. Sweeney

Providing an updated and comprehensive account of the properties of solid polymers, the book covers all aspects of mechanical behaviour. This includes finite elastic behavior, linear viscoelasticity and mechanical relaxations, mechanical anisotropy, non-linear viscoelasicity, yield behavior and fracture. New to this edition is coverage of polymer nanocomposites, and molecular interpretations of yield, e. g. Bowden, Young, and Argon. The book begins by focusing on the structure of polymers, including their chemical composition and physical structure. It goes on to discuss the mechanical properties and behaviour of polymers, the statistical molecular theories of the rubber-like state and describes aspects of linear viscoelastic behaviour, its measurement, and experimental studies. Later chapters cover composites and experimental behaviour, relaxation transitions, stress and yielding. The book concludes with a discussion of breaking phenomena.

Mechanical Sciences: The Way Forward

by Uday S. Dixit Santosha Kumar Dwivedy

This book consists of review articles by experts on recent developments in mechanical engineering sciences. The book has been composed to commemorate the Silver Jubilee of the Mechanical Engineering Department, Indian Institute of Technology Guwahati. It includes articles on modern mechanical sciences subjects of advanced simulation techniques and molecular dynamics, microfluidics and microfluidic devices, energy systems, intelligent fabrication, microscale manufacturing, smart materials, computational techniques, robotics and their allied fields. It presents the upcoming and emerging areas in mechanical sciences which will help in formulation of new courses and updating existing curricula. This book will help the academicians and policy makers in the field of engineering education to chart out the desired path for the development of technical education.

Mechanical Self-Assembly

by Xi Chen

Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication.

Mechanical Simulation with MATLAB® (Springer Tracts in Mechanical Engineering)

by Dan B. Marghitu Hamid Ghaednia Jing Zhao

This book deals with the simulation of the mechanical behavior of engineering structures, mechanisms and components. It presents a set of strategies and tools for formulating the mathematical equations and the methods of solving them using MATLAB. For the same mechanical systems, it also shows how to obtain solutions using a different approaches. It then compares the results obtained with the two methods. By combining fundamentals of kinematics and dynamics of mechanisms with applications and different solutions in MATLAB of problems related to gears, cams, and multilink mechanisms, and by presenting the concepts in an accessible manner, this book is intended to assist advanced undergraduate and mechanical engineering graduate students in solving various kinds of dynamical problems by using methods in MATLAB. It also offers a comprehensive, practice-oriented guide to mechanical engineers dealing with kinematics and dynamics of several mechanical systems.

Mechanical Stretch and Cytokines

by Irina Kiseleva Andre Kamkin

This book presents the latest findings in the field of investigation of molecular mechanisms of mechanical stretch and the role of cytokines in response of different tissues to it. On the one hand this Volume demonstrates how mechanical stretch enhances cytokines production. It describes how cytokines influence tissues and cells on a background of a mechanical stretching. It provides a description of how cells in different tissues are activated by stretch and cytokines via various signaling pathways, and how they change their gene expression. The book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. Knowledge of biomechanics, and mechanisms which underlie it on molecular, cellular and tissue, is necessary for understanding of the normal functioning of living organisms and allows to predict changes, which arise due to alterations of their environment.

Refine Search

Showing 46,726 through 46,750 of 82,321 results