- Table View
- List View
Mechanical Support for Cardiac and Respiratory Failure in Pediatric Patients
by Brian DuncanAnswering the demand for acomprehensive, all-purpose volume focusing on the challenging needs of pediatric patients, Mechanical Support for Cardiac and Respiratory Failure in Pediatric Patients summarizes a wealth of knowledge on the mechanical devices, clinical management, alternative applications, and future directions in the specialized field of
The Mechanical Systems Design Handbook: Modeling, Measurement, and Control (Electrical Engineering Handbook)
by Osita D. I. Nwokah Yildirim HurmuzluWith a specific focus on the needs of the designers and engineers in industrial settings, The Mechanical Systems Design Handbook: Modeling, Measurement, and Control presents a practical overview of basic issues associated with design and control of mechanical systems. In four sections, each edited by a renowned expert, this book answers diverse questions fundamental to the successful design and implementation of mechanical systems in a variety of applications.Manufacturing addresses design and control issues related to manufacturing systems. From fundamental design principles to control of discrete events, machine tools, and machining operations to polymer processing and precision manufacturing systems.Vibration Control explores a range of topics related to active vibration control, including piezoelectric networks, the boundary control method, and semi-active suspension systems.Aerospace Systems presents a detailed analysis of the mechanics and dynamics of tensegrity structuresRobotics offers encyclopedic coverage of the control and design of robotic systems, including kinematics, dynamics, soft-computing techniques, and teleoperation.Mechanical systems designers and engineers have few resources dedicated to their particular and often unique problems. The Mechanical Systems Design Handbook clearly shows how theory applies to real world challenges and will be a welcomed and valuable addition to your library.
Mechanical Testing of Bone and the Bone-Implant Interface
by Yuehuei H. An Robert A. DraughnThe mechanical properties of whole bones, bone tissue, and the bone-implant interfaces are as important as their morphological and structural aspects. Mechanical Testing of Bone and the Bone-Implant Interface helps you assess these properties by explaining how to do mechanical testing of bone and the bone-implant interface for bone-related research
Mechanical Testing of Materials (Solid Mechanics and Its Applications #275)
by Emmanuel Gdoutos Maria Konsta-GdoutosThis book offers a comprehensive and in-depth exploration of the most widely used test methods for characterizing the deformation and failure behavior of materials. It presents a thorough treatise on mechanical testing, providing a valuable resource for researchers, engineers, and students seeking to understand the mechanical properties and performance of materials across various applications. The book is organized into ten chapters dedicated to specific test methods including tensile, compression, bending, torsion, multiaxial, indentation, fracture, fatigue, creep, high strain rates, nondestructive evaluation, ensuring a thorough examination of each technique's principles, procedures, and applications. It features two special chapters focusing specifically on the mechanical characterization of concrete and fiber composite materials. These chapters delve into the unique aspects and challenges associated with testing and analyzing these specific materials.
The Mechanical Universe: Mechanics and Heat, Advanced Edition
by Steven C. Frautschi Richard P. Olenick Tom M. Apostol David L. GoodsteinThis innovative physics textbook intended for science and engineering majors develops classical mechanics from a historical perspective. The presentation of the standard course material includes a discussion of the thought processes of the discoverers and a description of the methods by which they arrived at their theories. However the presentation proceeds logically rather than strictly chronologically, so new concepts are introduced at the natural moment. The book assumes a familiarity with calculus, includes a discussion of rigid body motion, and contains numerous thought-provoking problems. It is largely based in content on The Mechanical Universe: Introduction to Mechanics and Heat, a book designed in conjunction with a tele-course to be offered by PBS in the Fall of 1985. The advanced edition, however, does not coincide exactly with the video lessons, contains additional material, and develops the fundamental ideas introduced in the lower-level edition to a greater degree.
Mechanical Ventilation Amid the COVID-19 Pandemic: A Guide for Physicians and Engineers
by Amir A. Hakimi Thomas E. Milner Govind R. Rajan Brian J-F WongThe surge in COVID-19 cases leading to hospitalizations around the world quickly depleted hospital resources and reserves, forcing physicians to make extremely difficult life-or-death decisions on ventilator allocation between patients. Leaders in academia and industry have developed numerous ventilator support systems using both consumer- and industry-grade hardware to sustain life and to provide intermediate respiratory relief for hospitalized patients. This book is the first of its kind to discuss the respiratory pathophysiology underlying COVID-19, explain ventilator mechanics, provide and evaluate a repository of innovative ventilator support devices conceived amid the pandemic, and explain both hardware and software components necessary to develop an inexpensive ventilator support device. This book serves both as a historical record of the collaborative and innovative response to the anticipated ventilator shortage during the COVID-19 pandemic and as a guide for physicians, engineers, and DIY'ers interested in developing inexpensive transitory ventilator support devices.
Mechanical Vibration: Theory and Application
by Haym Benaroya Mark Nagurka Seon Mi HanThe Fifth edition of this classic textbook includes a solutions manual. Extensive supplemental instructor resources are forthcoming in the Fall of 2022. Mechanical Vibration: Theory and Application presents comprehensive coverage of the fundamental principles of mechanical vibration, including the theory of vibration, as well as discussions and examples of the applications of these principles to practical engineering problems. The book also addresses the effects of uncertainties in vibration analysis and design and develops passive and active methods for the control of vibration. Many example problems with solutions are provided. These examples as well as compelling case studies and stories of real-world applications of mechanical vibration have been carefully chosen and presented to help the reader gain a thorough understanding of the subject. There is a solutions manual for instructors who adopt this book. Request a solutions manual here (https://www.rutgersuniversitypress.org/mechanical-vibration).
Mechanical Vibration Analysis and Computation
by D. E. NewlandFocusing on applications rather than rigorous proofs, this volume is suitable for upper-level undergraduates and graduate students concerned with vibration problems. In addition, it serves as a practical handbook for performing vibration calculations.An introductory chapter on fundamental concepts is succeeded by explorations of frequency response of linear systems and general response properties, matrix analysis, natural frequencies and mode shapes, singular and defective matrices, and numerical methods for modal analysis. Additional topics include response functions and their applications, discrete response calculations, systems with symmetric matrices, continuous systems, and parametric and nonlinear effects. The text is supplemented by extensive appendices and answers to selected problems. This volume functions as a companion to the author's introductory volume on random vibrations (see below). Each text can be read separately; and together, they cover the entire field of mechanical vibrations analysis, including random and nonlinear vibrations and digital data analysis.
Mechanical Vibration and Shock Analysis, Fatigue Damage: Fatigue Damage (Iste Ser. #405)
by Christian LalanneFatigue damage in a system with one degree of freedom is one of the two criteria applied when comparing the severity of vibratory environments. The same criterion is also used for a specification representing the effects produced by the set of vibrations imposed in a real environment. In this volume, which is devoted to the calculation of fatigue damage, Christian Lalanne explores the hypotheses adopted to describe the behavior of material affected by fatigue and the laws of fatigue accumulation.The author also considers the methods for counting response peaks, which are used to establish the histogram when it is not possible to use the probability density of the peaks obtained with a Gaussian signal. The expressions for mean damage and its standard deviation are established and other hypotheses are tested.
Mechanical Vibration and Shock Analysis, Mechanical Shock: Sinusoidal Vibration (Mechanical Vibration And Shock Ser. #Vol. I)
by Christian LalanneThis volume considers the shock response spectrum, its various definitions, properties and the assumptions involved in its calculation. In developing the practical application of these concepts, the forms of shock most often used with test facilities are presented together with their characteristics and indications of how to establish test configurations comparable with those in the real, measured environment. This is followed by a demonstration of how to meet these specifications using standard laboratory equipment – shock machines, electrodynamic exciters driven by a time signal or a response spectrum – with a discussion on the limitations, advantages and disadvantages of each method.
Mechanical Vibration and Shock Analysis, Random Vibration: Random Vibration (Iste Ser. #404)
by Christian LalanneThe vast majority of vibrations encountered in the real environment are random in nature. Such vibrations are intrinsically complicated and this volume describes the process that enables us to simplify the required analysis, along with the analysis of the signal in the frequency domain. The power spectrum density is also defined, together with the requisite precautions to be taken in its calculations as well as the processes (windowing, overlapping) necessary to obtain improved results. An additional complementary method – the analysis of statistical properties of the time signal – is also described. This enables the distribution law of the maxima of a random Gaussian signal to be determined and simplifies the calculation of fatigue damage by avoiding direct peak counting.
Mechanical Vibration and Shock Analysis, Sinusoidal Vibration: Sinusoidal Vibration (Iste Ser. #402)
by Christian LalanneEverything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to maintain structural integrity in the event of a crash. There are detailed examinations of underlying theory, models developed for specific applications, performance of materials under test conditions and in real-world settings, and case studies and discussions of how the relationships between these affect design for actual products. Invaluable to engineers specializing in mechanical, aeronautical, civil, electrical and transportation engineering, this reference work, in five volumes is a crucial resource for the solution of shock and vibration problems. The relative and absolute response of a mechanical system with a single degree of freedom is considered for an arbitrary excitation, and its transfer function is defined in various forms. The characteristics of sinusoidal vibration are examined in the context both of the real world and of laboratory tests, and for both transient and steady state response of the one-degree-of-freedom system. Viscous damping and then non-linear damping are considered. The various types of swept sine perturbations and their properties are described and, for the one-degree-of-freedom system, the consequence of an inappropriate choice of sweep rate are considered. From the latter, rules governing the choice of suitable sweep rates are then developed.
Mechanical Vibration and Shock Analysis, Specification Development: Specification Development (Iste Ser.)
by Christian LalanneEverything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to maintain structural integrity in the event of a crash. There are detailed examinations of underlying theory, models developed for specific applications, performance of materials under test conditions and in real-world settings, and case studies and discussions of how the relationships between these affect design for actual products. Invaluable to engineers specializing in mechanical, aeronautical, civil, electrical and transportation engineering, this reference work, in five volumes is a crucial resource for the solution of shock and vibration problems. This volume focuses on specification development in accordance with the principle of tailoring. Extreme response and the fatigue damage spectra are defined for each type of stress (sinusoidal vibration, swept sine, shock, random vibration, etc.). The process for establishing a specification from the life cycle profile of equipment which will be subject to these types of stresses is then detailed. The analysis takes into account the uncertainty factor, designed to cover uncertainties related to the real-world environment and mechanical strength, and the test factor, which takes account of the number of tests performed to demonstrate the resistance of the equipment.
Mechanical Vibrations: Applications to Equipment
by Yvon MoriThe purpose of this book is to clarify the issues related to the environment of mechanical vibrations in the material life profile. In particular, through their simulation testing laboratory, through a better understanding of the physical phenomenon, means to implement to simulate, measurements and interpretations associated results. It is aimed at development of technical consultants, quality and services primarily to those testing laboratories, as well as to all those who are faced with supply reference to the environmental test calls and particularly here, vibration tests. Furthermore it should also interest students of engineering schools in the areas of competence of their future professions affected by vibration. We thus define the phenomenon of vibrations from the standpoint of environmental specialist through some basic concepts essential to know how to interpret the normative documents published to date and perform some simple calculations of predictive behavior of the studied material.
Mechanical Vibrations
by Daniel J. Rixen Michel GeradinMechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a comprehensively updated new edition of the popular textbook. It presents the theory of vibrations in the context of structural analysis and covers applications in mechanical and aerospace engineering. Although keeping the same overall structure, the content of this new edition has been significantly revised in order to cover new topics, enhance focus on selected important issues, provide sets of exercises and improve the quality of presentation.Without being exhaustive (see the Introduction for a comprehensive list), some key features include: A systematic approach to dynamic reduction and substructuring, based on duality between mechanical and admittance conceptsAn introduction to experimental modal analysis and identification methodsAn improved, more physical presentation of wave propagation phenomenaA comprehensive presentation of current practice for solving large eigenproblems, focusing on the efficient linear solution of large, sparse and possibly singular systemsA deeply revised description of time integration schemes, providing framework for the rigorous accuracy/stability analysis of now widely used algorithms such as HHT and Generalized-αSolved exercises and end of chapter homework problemsA companion website hosting supplementary materialWith revised, coherent and uniform notation, Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a must-have textbook for graduate students working with vibration in mechanical, aerospace and civil engineering, and is also an excellent reference for researchers and industry practitioners.
Mechanical Vibrations: Modeling and Measurement
by Tony L. Schmitz K. Scott SmithNow in an updated second edition, this classroom-tested textbook describes essential concepts in vibration analysis of mechanical systems.The second edition includes a new chapter on finite element modeling and an updated section on dynamic vibration absorbers, as well as new student exercises in each chapter. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students, researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text.The book is ideal for undergraduate students, researchers, and practicing engineers who are interested in developing a more thorough understanding of essential concepts in vibration analysis of mechanical systems.Presents a clear connection between continuous beam models and finite degree of freedom models;Includes MATLAB code to support numerical examples that are integrated into the text narrative;Uses mathematics to support vibrations theory and emphasizes the practical significance of the results.
Mechanical Vibrations
by Tony L. Schmitz K. Scott SmithMechanical Vibrations: Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of model analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students, researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text.
Mechanical Wear Fundamentals and Testing, Revised and Expanded
by Raymond J. BayerWritten by a tribological expert with more than thirty years of experience in the field, Mechanical Wear Fundamentals and Testing, Second Edition compiles an extensive range of graphs, tables, micrographs, and drawings to illustrate wear, friction, and lubrication behavior in modern engineering applications. The author promotes a clear understandin
The Mechanical World: The Metaphysical Commitments of the New Mechanistic Approach (Studies in Brain and Mind #13)
by Beate KrickelThis monograph examines the metaphysical commitments of the new mechanistic philosophy, a way of thinking that has returned to center stage. It challenges a variant of reductionism with regard to higher-level phenomena, which has crystallized as a default position among these so-called New Mechanists. Furthermore, it opposes those philosophers who reject the possibility of interlevel causation. Contemporary philosophers believe that the explanation of scientific phenomena requires the discovery of relevant mechanisms. As a result, new mechanists are, in the main, concerned solely with epistemological questions. But, the author argues, their most central claims rely on metaphysical assumptions. Thus, they must also take into account metaphysics, a system of thought concerned with explaining the fundamental nature of being and the world around it. This branch of philosophy does indeed matter to the empirical sciences. The chapters investigate the nature of mechanisms, their components, and the ways in which they can bring about different phenomena. In addition, the author develops a novel account of causation in terms of activities. The analysis provides the basis for many further research projects on mechanisms and their relations to, for example, the mind-body problem, realization, multiple realization, natural kinds, causation, laws of nature, counterfactuals, and scientific levels.
Mechanically Alloyed Novel Materials: Processing, Applications, and Properties (Advanced Structured Materials #220)
by Shashanka RajendrachariThis book provides in-depth information about the evolution of mechanical alloying over the past few decades. It explains how the technology has improved with time and the different types of mechanical alloying processes and their mechanisms to prepare powders. It presents factors affecting the mechanical alloying process followed by an overview and comparison of dry and wet milling. A comparative study of mechanical alloying and other conventional powder metallurgical methods to achieve maximum density for structure-property relationship is also presented. The book also provides information about modern methods used to characterize the ball milled powders and their consolidation by highly advanced sintering methods. It discusses the processing, properties, and applications of high entropy alloys, ODS stainless steel, shape memory alloys, cermets, iron, copper, zinc, tungsten, aluminum, titanium, magnesium, and ceramic-based alloys. Apart from these topics, the book covers important types of ferrous and non-ferrous alloys that are prepared by mechanical alloying, providing an insight as to why this method is popular and advantageous over other conventional powder metallurgical methods, and discussing the appropriate method for fabricating each type of ferrous and non-ferrous alloys.
Mechanically Gated Channels and their Regulation
by Andre Kamkin Ilya LozinskyThe volume dwells on the major issues of mechanical stress influencing the ion channels and intracellular signaling pathways. This book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. In our opinion the book presents not only the latest achievements in the field but also brings the problem closer to the experts in related medical and biological sciences as well as practicing doctors. Knowledge of the mechanisms which underlie these processes is necessary for understanding of the normal functioning of different living organs and tissues and allows to predict changes, which arise due to alterations of their environment, and possibly will allow to develop new methods of artificial intervention. We also hope that presenting the problem will attract more attention to it both from researchers and practitioners and will assist to efficiently introduce it into the practical medicine.
Mechanically Interlocked Materials: Polymers, Nanomaterials, MOFs, and more
by Emilio M. PérezMechanically Interlocked Materials Comprehensive one-stop resource on the emerging world of mechanically interlocked materials (MIMats) Mechanically Interlocked Materials provides a thorough overview of the new emerging field in supramolecular chemistry. Edited by one of the leading researchers in the field, Mechanically Interlocked Materials includes information on: Types of MIMats, such as metal organic frameworks, polymers, carbon nanotubes, nanoparticles, and othersMain advantages/disadvantages of the mechanical bond of MIMats with respect to covalent or supramolecular alternativesMechanically interlocked (MI) electronics, molecular materials, nano and micro particles, nucleic acids, and proteinsForce in MIMs, MIMs on surfaces, polycatenanes, sliding ring gels, and potential applications of MIMats as molecular switches and binary materials With comprehensive coverage of an important emerging field, Mechanically Interlocked Materials is an essential resource for students and professionals in a variety of scientific fields, including organic, inorganic, supramolecular, and physical chemistry, physics, materials science, and nanotechnology.
Mechanics
by J. P. HartogFirst published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing engineer as it is as a text or refresher for the general engineering student. Mechanics is not a "heavy" book, despite the amount of material it covers and the clarity and exactness with which it treats this material. It is undoubtedly one of the most readable texts in the field. More than 550 drawings and diagrams in the regular text and in the highly praised 112-page section of problems and answers further contribute to its lucidity and value. The emphasis is consistently on illuminating fundamental principles and in showing how they are embodied in a high number of real engineering and design problems concerning trusses, loaded cables, beams, jacks, hoists, brakes, cantilevers, springs, balances, pendulums, projectiles, cranks, linkages, propellers, turbines, fly ball engine governors, hydraulic couplings, anti-roll devices, gyroscopes, and hundreds of other mechanical systems and devices.Chapters cover Discrete Coplanar Forces, Conditions of Equilibrium, Distributed Forces, Trusses and Cables, Beams, Friction, Space Forces, The Method of Work, Kinematics of a Point, Dynamics of a Particle, Kinematics of Plane Motion, Moments of Inertia, Dynamics of Plane Motion, Work and Energy, Impulse and Momentum, Relative Motion, and Gyroscopes. Particularly in the last two chapters, Den Hartog provides advanced material not usual in introductory texts. "Very thoroughly recommended to all those anxious to improve their real understanding of the principles of mechanics." -- Mechanical World. Index. List of equations. 334 problems, all with answers. Over 550 diagrams and drawings.
Mechanics
by Ioan Merches Masud Chaichian Anca TureanuMechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines. During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether's theorem and the extension of variational principles in various interdisciplinary sciences (for instance, magnetofluid dynamics). Thus, there ought to exist a book concerned with the applied analytical formalism, first developed in the frame of theoretical mechanics, which has proved to be one of the most efficient tools of investigation in the entire arena of science.The present book is an outcome of the authors' teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects. We hope that the original presentation and the distribution of the topics, the various applications in many branches of physics and the set of more than 100 proposed problems, shall make this book a comprehensive and useful tool for students and researchers. The present book is an outcome of the authors' teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, engineering, astronomy, applied mathematics and for researchers working in related subjects. We hope that the original presentation and the distribution of the topics, the various applications in many branches of physics and the set of more than 100 proposed problems, shall make this book a comprehensive and useful tool for students and researchers.
Mechanics
by Florian ScheckPurpose and Emphasis. Mechanics not only is the oldest branch of physics but was and still is the basis for all of theoretical physics. Quantum mechanics can hardly be understood, perhaps cannot even be formulated, without a good knowledge of general mechanics. Field theories such as electrodynamics borrow their formal framework and many of their building principles from mechanics. In short, throughout the many modem developments of physics where one fre quently turns back to the principles of c1assical mechanics its model character is feIt. For this reason it is not surprising that the presentation of mechanics reflects to some extent the development of modem physics and that today this c1assical branch of theoretical physics is taught rather differently than at the time of Arnold Sommerfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the theory and the applications of partial-differential equations. Today, symme tries and invariance principles, the structure ofthespace-time continuum, and the geometrical structure of mechanics play an important role. The beginner should realize that mechanics is not primarily the art of describing block-and-tackles, coIIisions of billiard balls, constrained motions of the cylinder in a washing ma chine, or bicycle riding.