Browse Results

Showing 47,251 through 47,275 of 82,321 results

Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

by Johann Rafelski

This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gadzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph. D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.

Membrane Abnormalities In Hypertension (Routledge Revivals #1)

by Chiu-Yin Kwan

First Published in 1989, this two-volume set offers a full insight into membrane abnormalities during a state of hypertension. Carefully compiled and filled with diagrams, references and information this set is recommended for students of medicine and other professionals in their respective fields.

Membrane Analysis

by Dr John Graham Joan Higgins

Membrane Analysis provides a comprehensive review of laboratory methods for membrane study, with an emphasis on isolating membranes, analysing their composition and architecture, and investigating membrane function.

Membrane and Desalination Technologies

by Yung-Tse Hung Lawrence K. Wang Jiaping Paul Chen Nazih K. Shammas

In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.

Membrane and Membrane-Based Processes for Wastewater Treatment (Wastewater Treatment and Research)

by Maulin P. Shah

The proposed book mainly sorts out emerging and burning issues faced day to day by municipal and industrial wastewater treatments. It also provides a comprehensive view of recent advances in hybrid treatment technologies for wastewater treatment, addresses the current limitations and challenges of applying these tools in wastewater treatment systems. This book gives an insight about recent developments in membrane technology for wastewater treatment. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. In this sense, membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater. The present book analyses and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater along with the recovery of valuable compounds and water reutilization. In addition, recent and future trends in membrane technology are highlighted. FEATURES 1. The properties, mechanisms, advantages, limitations and promising solutions of different types of membrane technologies are discussed. 2. The optimization of process parameters is addressed. 3. The performance of different membranes is described. 4. The potential of nanotechnology to improve the treatment efficiency of wastewater treatment plants is presented. 5. The application of membrane and membrane-based hybrid treatment technologies for wastewater treatment is covered.

Membrane Based Methods for Dye Containing Wastewater: Recent Advances (Sustainable Textiles: Production, Processing, Manufacturing & Chemistry)

by Subramanian Senthilkannan Muthu Ali Khadir

This book highlights recent findings of membrane - based dye removal methods along with the application of photocatalytic, nanofiltration and ultrafiltration membrane including membrane – based fibers, metal-organic frameworks, polyethersulfone, ceramic, etc. Among water and wastewater pollutants, dyes have been normally observed and detected in various aquatic solutions, including rivers and lakes. Aesthetic pollution, toxicity, persistent, and carcinogenicity are some of the adverse effects of dyes entering the ecosystem. Although dyes have brought a colourful world, their presence in the environment are responsible for adverse effects on the planet. Diverse physical, chemical and biological methods are available to treat dye contaminated water. This book presents membrane separation technology that has been developed in the past decade to treat different wastewaters, and owning to its effective performance, has garnered the attention of academia and industry alike.

Membrane Biogenesis: Methods and Protocols

by Doron Rapaport Johannes M. Herrmann

Membrane proteins and membrane lipids form complex interactive systems that are highly dynamic and able to be studied only by combinations of different in vivo and in vitro techniques. In Membrane Biogenesis: Methods and Protocols, experts in the field present a broad collection of methods to study the biogenesis and function of cellular membranes. Beginning with how membrane lipids or membrane proteins can be studied, this detailed volume continues with sections covering different procedures to investigate the interaction of membrane proteins among each other or with membrane lipids, methods to study the biogenesis of membrane proteins and the dynamics of organelles, as well as protocols for the analyses of the functions or complex organization of membrane proteins. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Extensive and easily applicable, Membrane Biogenesis: Methods and Protocols provides readers with a comprehensive but still concise collection including both basic protocols of rather general application and more specialized methods for specific and novel techniques.

Membrane Biophysics

by Jack A. Tuszynski Mohammad Ashrafuzzaman

Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

Membrane Bioreactor Processes: Principles and Applications (Advances in Water and Wastewater Transport and Treatment)

by null Seong-Hoon Yoon

Grasp the Essential Principles of Membrane Bioreactor ProcessesEvolved from the conventional activated sludge (CAS) process, membrane bioreactor (MBR) processes have become the next-generation solution for municipal and industrial wastewater treatment and recycle. Membrane Bioreactor Processes: Principles and Applications explores nearly all the th

Membrane Desalination: From Nanoscale to Real World Applications

by Andreas Sapalidis

This book aims to provide details about membrane desalination processes, starting from basic concepts leading to real world implementation. Chapters cover novel research topics such as biomimetic and nanocomposite membranes, nanostructured fillers for mixed matrix membranes, advanced characterization techniques and molecular modeling. Additionally, engineering and economical aspects of desalination as well as the exploitation of green energy sources are thoroughly presented. This books targets bridging the gap between the everyday research laboratory practices with practical application demands, so that the readers gain a global perspective of all desalination challenges.

Membrane Distillation: Membranes, Hybrid Systems and Pilot Studies

by Kang-Jia Lu Tai-Shung Chung

This book aims to elaborate the basics and recent advances of membrane distillation (MD) as the same shows promise for seawater desalination and wastewater treatment. Starting with fundamentals of MD processes, including the heat and mass transfer analysis, energy evaluation and mathematical modelling, text includes engineering and molecular design of MD membranes. Various types of hybrid systems, including freeze desalination (FD)-MD, MD-crystallization (MDC), pressure retarded osmosis (PRO)-MD and forward osmosis (FO)-MD, will be discussed in this book. Further, it summarizes the future of MD from both industrial and academic perspectives along with energy sources and economic analysis.

Membrane-Distillation in Desalination

by Farid Benyahia

Membrane-Distillation in Desalination is an attempt to provide the latest knowledge, state of the art and demystify outstanding issues that delay the deployment of the technology on a large scale. It includes new updates and comprehensive coverage of the fundamentals of membrane distillation technology and explains the energy advantage of membrane distillation for desalination when compared to traditional techniques such as thermal or reverse osmosis. The book includes the latest pilot test results from around the world on membrane distillation desalination.

Membrane Dynamics and Calcium Signaling (Advances In Experimental Medicine And Biology #981)

by Joachim Krebs

This book describes the newest discoveries on calcium signaling happening at the cellular and intracellular membranes, often exerted in so called microdomains. Calcium entry and release, its interaction with proteins and resulting events on proteins and organelles are comprehensively depicted by leading experts in the field. Knowledge about details of these highly dynamic processes rapidly increased in recent years, the book therefore provides a timely summary on the processes of calcium signaling and related membrane dynamics; it is aimed at students and researchers in biochemistry and cell biology.

Membrane Fabrication

by Nidal Hilal Ahmad Fauzi Ismail Chris J. Wright

Membranes play a crucial role in ensuring the optimum use and recovery of materials in manufacturing. In the process industries, they are required for efficient production and minimization of environmental impact. They are also essential for the efficient production of clean water, a significant global issue. Membrane Fabrication brings together ex

Membrane Fusion

by Jan Wilschut

This balanced volume provides a broad and coherent overview of recent progress in membrane fusion research—highlighting an interdisciplinary treatment of the subject from the fields of biophysics, biochemistry, cell biology, virology, and biotechnology—in a single volume., Featuring easy-access sections on the general properties of membranes and applications of membrane fusion techniques, this valuable sourcebook outlines membrane structure, lipid polymorphism, and intermembrane forces ... covers membrane fusion in model systems ... presents the fusogenic properties of enveloped viruses ... discusses the fusion and flow of intracellular membranes and cell-cell fusion occurring during fertilization and myogenesis ... offers applications of membrane fusion techniques in cell-biological research and biotechnology ... and more. Supplying a comprehensive view of this exciting topic, Membrane Fusion is a working resource for molecular, cell, and membrane biologists; biophysicists; biochemists; virologists; biotechnologists; microbiologists; immunologists; physiologists; and graduate and medical school students in biophysics, biochemistry, physiology, virology, cell biology, and biotechnology.

Membrane Gas Separation

by Benny Freeman Yuri Yampolskii

Gas separation membranes offer a number of benefits over other separation technologies, and they play an increasingly important role in reducing the environmental impacts and costs of many industrial processes.This book describes recent and emerging results in membrane gas separation, including highlights of nanoscience and technology, novel polymeric and inorganic membrane materials, new membrane approaches to solve environmental problems e.g. greenhouse gases, aspects of membrane engineering, and recent achievements in industrial gas separation. It includes:Hyperbranched polyimides, amorphous glassy polymers and perfluorinated copolymersNanocomposite (mixed matrix) membranesPolymeric magnetic membranesSequestration of CO2 to reduce global warmingIndustrial applications of gas separationDeveloped from sessions of the most recent International Congress on Membranes and Membrane Processes, Membrane Gas Separation gives a snapshot of the current situation, and presents both fundamental results and applied achievements.

Membrane Hydration

by E. Anibal Disalvo

This book is about the importance of water in determining the structure, stability and responsive behavior of biological membranes. Water confers to lipid membranes unique features in terms of surface and mechanical properties. The analysis of the hydration forces, plasticiser effects, controlled hydration, formation of microdomains of confined water suggests that water is an active constituent in a water-lipid system. The chapters describe water organization at the lipid membrane-water interphase, the water penetration, the long range water structure in the presence of lipid membranes by means of X-ray and neutron scattering, general polarization, fluorescent probes, ATR-FTIR and near infrared spectroscopies, piezo electric methods, computer simulation and surface thermodynamics. Permeation, percolation, osmotic stress, polarization, protrusion, sorption, hydrophobicity, density fluctuations are treated in detail in self-assembled bilayers. Studies in lipid monolayers show the correlation of surface pressure with water activity and its role in peptide and enzyme interactions. The book concludes with a discussion on anhydrobiosis and the effect of water replacement in microdomains and its consequence for cell function. New definitions of lipid/water interphases consider water not only as a structural-making solvent but as a mediator in signalling metabolic activity, modulating protein insertion and enzymatic activity, triggering oscillatory reactions and functioning of membrane bound receptors. Since these effects occur at the molecular level, membrane hydration appears fundamental to understand the behavior of nano systems and confined environments mimicking biological systems. These insights in structural, thermodynamical and mechanical water properties give a base for new paradigms in membrane structure and function for those interested in biophysics, physical chemistry, biology, bio and nano medicine, biochemistry, biotechnology and nano sciences searching for biotechnological inputs in human health, food industry, plant growing and energy conversion.

Membrane Lipidomics for Personalized Health

by Carla Ferreri Chryssostomos Chatgilialoglu

Lipidomics is an important aspect of personalized medicine in relation to nutrition and metabolism. This approach has become important due to the substantial presence of nutraceuticals in the market, since it gives personalized criteria on how to choose the right nutraceutical strategy for both prevention and for quality of life. This multi-disciplinary textbook uses a simple and practical approach to provide a comprehensive overview of lipidomics and their connection with health and nutrition. The text is divided into two parts: - Part 1 outlines the basics of lipidomics and focuses on the biochemical and nutritional aspects with descriptions of the analytical methods employed for the examination of cell membrane fatty acid composition. - Part 2 familiarizes the reader with the use of membrane lipidomic diagnostics in practical health care, using health conditions as examples to introduce the concept of lipidomic profiles in different physiological and pathological situations including prevention. Through the various properties of membrane lipidomics, readers will be able to combine the molecular status of the cell membrane with the evaluation of the subject for personalized nutritional and nutraceutical strategies. Membrane Lipidomics for Personalized Health will be beneficial to biologists, biochemists and medical researchers, as well as health care professionals, pharmacists, and nutritionists seeking in-depth information on the topic.

Membrane Lipids: Methods and Protocols (Methods in Molecular Biology #2402)

by Charles G. Cranfield

This detailed book explores examples of current in vitro and in silico techniques that are at the forefront of lipid membrane research today. Beginning with methods and strategies associated with the creation and use of lipid membrane models in various research settings, the volume continues with electrical impedance spectroscopy strategies and methods to identify how ions and proteins interact with model lipid bilayers, guidance on lipid bilayer in silico molecular dynamics modeling, novel techniques to explore lipid bilayer characteristics using neutron scattering, IR spectroscopy, and atomic force microscopy (AFM), as well as unique fluorescence techniques. Written in the highly successful Methods in Molecular Biology series style, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Membrane Lipids: Methods and Protocols serves as an ideal guide for researchers seeking to further investigate the often complicated world of lipid membrane biophysics.

Membrane Materials for Gas and Separation: Synthesis and Application fo Silicon-containing Polymers

by E. Finkelshtein Yuri Yampolskii

Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both. Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares

Membrane Modification: Technology and Applications

by Nidal Hilal Mohamed Khayet Chris J. Wright

Membrane Modification: Technology and Applications is written for engineers, scientists, graduate students, and researchers in the field of membrane science and technology, materials science, applied physics, chemistry, and environmental science. The book presents the complete range of membrane modification techniques used to increase efficiency of

Membrane Potential Imaging in the Nervous System

by Dejan Zecevic Marco Canepari

The book is structured in five sections, each containing several chapters written by experts and major contributors to particular topics. The volume starts with a historical perspective and fundamental principles of membrane potential imaging and continues to cover the measurement of membrane potential signals from dendrites and axons of individual neurons, measurements of the activity of many neurons with single cell resolution, monitoring of population signals from the nervous system, and concludes with the overview of new approaches to voltage-imaging. The book is targeted at all scientists interested in this mature but also rapidly expanding imaging approach.

Membrane Potential Imaging in the Nervous System and Heart

by Marco Canepari Dejan Zecevic Olivier Bernus

This volume discusses membrane potential imaging in the nervous system and in the heart and modern optical recording technology. Additionally, it covers organic and genetically-encoded voltage-sensitive dyes; membrane potential imaging from individual neurons, brain slices, and brains in vivo; optical imaging of cardiac tissue and arrhythmias; bio-photonics modelling. This is an expanded and fully-updated second edition, reflecting all the recent advances in this field. Twenty chapters, all authored by leading names in the field, are cohesively structured into four sections. The opening section focuses on the history and principles of membrane potential imaging and lends context to the following sections, which examine applications in single neurons, networks, large neuronal populations and the heart. Topics discussed include population membrane potential signals in development of the vertebrate nervous system, use of membrane potential imaging from dendrites and axons, and depth-resolved optical imaging of cardiac activation and repolarization. The final section discusses the potential - and limitations - for new developments in the field, including new technology such as non-linear optics, advanced microscope designs and genetically encoded voltage sensors. Membrane Potential Imaging in the Nervous System and Heart is ideal for neurologists, electro physiologists, cardiologists and those who are interested in the applications and the future of membrane potential imaging.

Membrane Process Design Using Residue Curve Maps

by David Glasser Diane Hildebrandt Mark Peters Shehzaad Kauchali

Design and Synthesis of Membrane Separation Processes provides a novel method of design and synthesis for membrane separation. While the main focus of the book is given to gas separation and pervaporation membranes, the theory has been developed in such a way that it is general and valid for any type of membrane. The method, which uses a graphical technique, allows one to calculate and visualize the change in composition of the retentate (non-permeate) phase. This graphical approach is based on Membrane Residue Curve Maps. One of the strengths of this approach is that it is exactly analogous to the method of Residue Curve Maps that has proved so successful in distillation system synthesis and design.

Membrane Processes: Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations

by S. Sridhar Siddhartha Moulik

Separation processes are challenging steps in any process industry for isolation of products and recycling of reactants. Membrane technology has shown immense potential in separation of liquid and gaseous mixtures, effluent treatment, drinking water purification and solvent recovery. It has found endless popularity and wide acceptance for its small footprint, higher selectivity, scalability, energy saving capability and inherent ease of integration into other unit operations. There are many situations where the target component cannot be separated by distillation, liquid extraction, and evaporation. The different membrane processes such as pervaporation, vapor permeation and membrane distillation could be used for solving such industrial bottlenecks. This book covers the entire array of fundamental aspects, membrane synthesis and applications in the chemical process industries (CPI). It also includes various applications of pervaporation, vapor permeation and membrane distillation in industrially and socially relevant problems including separation of azeotropic mixtures, close-boiling compounds, organic–organic mixtures, effluent treatment along with brackish and seawater desalination, and many others. These processes can also be applied for extraction of small quantities of value-added compounds such as flavors and fragrances and selective removal of hazardous impurities, viz., volatile organic compounds (VOCs) such as vinyl chloride, benzene, ethyl benzene and toluene from industrial effluents.Including case studies, this is a must-have for any process or chemical engineer working in the industry today. Also valuable as a learning tool, students and professors in chemical engineering, chemistry, and process engineering will benefit greatly from the groundbreaking new processes and technologies described in the volume.

Refine Search

Showing 47,251 through 47,275 of 82,321 results