Browse Results

Showing 47,601 through 47,625 of 84,423 results

Multiobjective Optimization Algorithms for Bioinformatics

by Ujjwal Maulik Sanghamitra Bandyopadhyay Anirban Mukhopadhyay Sumanta Ray

This book provides an updated and in-depth introduction to the application of multiobjective optimization techniques in bioinformatics. In particular, it presents multiobjective solutions to a range of complex real-world bioinformatics problems. The authors first provide a comprehensive yet concise and self-contained introduction to relevant preliminary methodical constructions such as genetic algorithms, multiobjective optimization, data mining and several challenges in the bioinformatics domain. This is followed by several systematic applications of these techniques to real-world bioinformatics problems in the areas of gene expression and network biology. The book also features detailed theoretical and mathematical notes to facilitate reader comprehension. The book offers a valuable asset for a broad range of readers – from undergraduate to postgraduate, and as a textbook or reference work. Researchers and professionals can use the book not only to enrich their knowledge of multiobjective optimization and bioinformatics, but also as a comprehensive reference guide to applying and devising novel methods in bioinformatics and related domains.

Multiobjective Optimization Methodology: A Jumping Gene Approach (Industrial Electronics)

by K.S. Tang T.M. Chan R.J. Yin K.F. Man

The first book to focus on jumping genes outside bioscience and medicine, Multiobjective Optimization Methodology: A Jumping Gene Approach introduces jumping gene algorithms designed to supply adequate, viable solutions to multiobjective problems quickly and with low computational cost. Better Convergence and a Wider Spread of Nondominated Solutions The book begins with a thorough review of state-of-the-art multiobjective optimization techniques. For readers who may not be familiar with the bioscience behind the jumping gene, it then outlines the basic biological gene transposition process and explains the translation of the copy-and-paste and cut-and-paste operations into a computable language. To justify the scientific standing of the jumping genes algorithms, the book provides rigorous mathematical derivations of the jumping genes operations based on schema theory. It also discusses a number of convergence and diversity performance metrics for measuring the usefulness of the algorithms. Practical Applications of Jumping Gene Algorithms Three practical engineering applications showcase the effectiveness of the jumping gene algorithms in terms of the crucial trade-off between convergence and diversity. The examples deal with the placement of radio-to-fiber repeaters in wireless local-loop systems, the management of resources in WCDMA systems, and the placement of base stations in wireless local-area networks. Offering insight into multiobjective optimization, the authors show how jumping gene algorithms are a useful addition to existing evolutionary algorithms, particularly to obtain quick convergence solutions and solutions to outliers.

Multipactor in Accelerating Cavities (Particle Acceleration and Detection)

by Valery D. Shemelin Sergey A. Belomestnykh

This book is written by two world-recognized experts in radio frequency (RF) systems for particle accelerators and is based on many years of experience in dealing with the multipactor phenomenon. The authors introduce and review multipactor in RF cavities for scientists and engineers working in the field of accelerator physics and technology. The multipactor phenomenon of unintended electron avalanches occurs in the RF cavities commonly and quite often is a performance-limiting factor. The book starts with an Introductory Overview which contains historical observations and brief description of most common aspects of the phenomenon. Part I deals with the multipactor in a flat gap. It starts with description of the dynamics of electrons, derivation of the stability condition and analyzing influence of several factors on the multipactor. Then, the initial considerations are extended to derive a generalized phase stability and finally a particular case, called ping-pong multipacting, is considered. The part one is concluded with a brief review of computer codes used in multipactor simulations. Part II is dedicated to the multipactor in crossed RF fields, the typical situation in accelerating cavities. Two cases of MP are considered: a two-point multipactor near the cavity equator in elliptical cavities and a one-point multipactor. Part III describes optimization of the cavity shapes geared toward designing multipactor-free structures. The book will serve as an importance reference on multipactor for those involved in developing and operating radio frequency cavities for particle accelerators.

Multiparameter Flow Cytometry in the Diagnosis of Haematologic Malignancies

by Anna Porwit Marie Christine Bene

Master implementation of the techniques of flow cytometry in diagnosing complex haematological diseases and malignancies in patients, worldwide. Featuring World Health Organization recommendations on pre-analytical steps, instrument settings and panel construction, this invaluable manual offers invaluable support for those researching, practising and analyzing the cause of hematological malignancies. Authored by leading experts, this book puts flow-cytometry into everyday context. With a focus on multicolour panels, the manual provides readers an experienced understanding of effective, implementation techniques. Practitioners of all levels are offered a background in a variety of diseases presented alongside the most current methodology. Wide-ranging and comprehensive; detailed images of healthy blood, bone marrow and lymph-nodes are illustrated throughout, allowing for effective diagnosis. Through engaging with differential diagnoses, the manual offers an understanding of similar symptoms and mimicking malignancies, avoiding inaccurate results. Featuring in-depth descriptions of chronic diseases; users can reach accurate diagnosis, first time. Focus on 8-10 multicolor panels, allowing readers to effectively understand how to plan and apply the panels in the most constructive way; Features up-to-date information and references, compiled by experts in the field; Illustrations are made using multiple analysis software options, highlighting the key features of various diseases, to best inform on diagnostic features.

Multiphase Biomedical Materials

by T. Tsuruta A. Nakajima

Following many reports that were published in the last two decades on correlations of multiphase structures of the surface of materials with their antithrombogenicity or biocompatibility a research project ''Design of Multiphase Biomedical Materials'' was carried out in Japan between 1982 and 1986. The objective of this research project was to elucidate various aspects of biomedical behaviour of multiphase systems at the interface with living bodies at the molecular, cellular and tissue levels. Multiphase materials studied cover polymers having microphase-separated structures, hydrogels, immobilized enzymes (or cells), ceramics and metallic materials. The research project was carried out by the following subgroups: -- Multiphase biomedical materials with microdomain structures -- Multiphase biomedical materials containing liquid components -- Hybrid-type multiphase biomedical materials with biological components -- Inorganic and metallic multiphase biomedical materials -- Methods for analysis and evaluation of multiphase biomedical materials This book contains the results of the research project in an edited form and aims to provoke a better understanding about various aspects of cell--material interactions in which the multiphase systems play a crucial role.

Multiphase Bioreactor Design

by Manuel Mota Joaquim M.S. Cabral Johannes Tramper

Bioreaction engineering is fundamental to the optimization of biotechnological processes and the production of biochemicals by enzymes, microbial, plant and animal cells and higher organisms.A reference text for postgraduate students and researchers in biochemical engineering and bioreactor design, Multiphase Bioreactor Design describes the

Multiphase Equilibria of Complex Reservoir Fluids: An Equation of State Modeling Approach (Petroleum Engineering)

by Huazhou Li

This short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations.This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.

Multiphase Flow Handbook (Mechanical and Aerospace Engineering Series)

by Efstathios E. Michaelides, Clayton T. Crowe and John D. Schwarzkopf

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Multiphase Flow In Permeable Media

by Martin J. Blunt

Hydrocarbon production, gas recovery from shale, CO2 storage and water management have a common scientific underpinning: multiphase flow in porous media. This book provides a fundamental description of multiphase flow through porous rock, with emphasis on the understanding of displacement processes at the pore, or micron, scale. Fundamental equations and principal concepts using energy, momentum, and mass balance are developed, and the latest developments in high-resolution three-dimensional imaging and associated modelling are explored. The treatment is pedagogical, developing sound physical principles to predict flow and recovery through complex rock structures, while providing a review of the recent literature. This systematic approach makes it an excellent reference for those who are new to the field. Inspired by recent research, and based on courses taught to thousands of students and professionals from around the world, it provides the scientific background necessary for a quantitative assessment of multiphase subsurface flow processes, and is ideal for hydrology and environmental engineering students, as well as professionals in the hydrocarbon, water and carbon storage industries.

Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core

by Jiyuan Tu Shengyao Jiang Xingtuan Yang Nan Gui

This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.

Multiphase Flow in Oil and Gas Well Drilling

by Baojiang Sun

A major contribution to the state-of-the-art for those interested in multiphase flow in well-bore, drilling cutting, hydrate and/or acid gas involvements The author is a leading researcher on the topics presented, and his development of gas-liquid flow pattern transition mechanism and multiphase flow models are major contributions to the multi-phase flow in wellbore Focuses on acid gas and hydrate involvements, offering the latest results from drilling engineering computation research Presents an emerging hot spot in petroleum engineering, with more multi-phase flow methodologies developed and adopted to improve the engineering process for gas & oil drilling and production

Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions

by Wioletta Podgórska

Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies

Multiphase Polymer Systems: Micro- to Nanostructural Evolution in Advanced Technologies

by Andreea Irina Barzic and Silvia Ioan

Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and theoretical aspects regarding the thermal and electrical transport phenomena and magnetic properties of crucial importance in advanced technologies. It reviews the most recent advances concerning morphological, rheological, interfacial, physical, fire-resistant, thermophysical, and biomedical properties of multiphase polymer systems. Concomitantly the book deals with basic investigation techniques that are sensitive in elucidating the features of each phase. It also discusses the latest research trends that offer new solutions for advanced bio- and nanotechnologies. Introduces an overview of recent studies in the area of multiphase polymer systems, their micro- and nanostructural evolutions in advanced technologies, and provides future outlooks, new challenges and opportunities. Discusses multicomponent structures that offer enhanced physical, mechanical, thermal, electrical, magnetic, and optical properties adapted to current requirements of modern technologies. Covers a wide range of materials, such as composites, blends, alloys, gels and interpenetrating polymer networks. Presents new strategies for controlling the micro- and nanomorphology and the mechanical properties of multiphase polymeric materials. Describes different applications of multiphase polymeric materials in various fields, including automotive, aeronautics and space industry, displays, and medicine.

Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications

by Fei Wei Yi Cheng Yong Jin

Provides a comprehensive review on the brand-new development of several multiphase reactor techniques applied in energy-related processes Explains the fundamentals of multiphase reactors as well as the sophisticated applications Helps the reader to understand the key problems and solutions of clean coal conversion techniques Details the emerging processes for novel refining technology, clean coal conversion techniques, low-cost hydrogen productions and CO2 capture and storage Introduces current energy-related processes and links the basic principles of emerging processes to the features of multiphase reactors providing an overview of energy conversion in combination with multiphase reactor engineering Includes case studies of novel reactors to illustrate the special features of these reactors

Multiphoton Microscopy (Neuromethods #148)

by Espen Hartveit

This volume covers the latest techniques and strategies used in multi-photon excitation (MPE) microscopy. Chapters in this book cover the fundamentals of MPE microscopy as applied to both in vitro and in vivo experimental systems; information on how to combine MPE microscopy with targeted electrophysiological recordings, calcium imaging, and transmembrane voltage imaging; methods to investigate cellular and large-scale neural morphology; signaling in astrocytes; and ways to use MPE microscopy to study the retina. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory.Comprehensive and thorough, Multiphoton Microscopy is a valuable resource for both expert and novice researchers interested in expanding their knowledge and research in this rapidly developing field.

Multiphoton Processes and Attosecond Physics

by Kaoru Yamanouchi Midorikawa Katsumi

Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.

Multiphysics Modeling with Application to Biomedical Engineering

by Z. Yang

The aim of this book is to introduce the simulation of various physical fields and their applications for biomedical engineering, which will provide a base for researchers in the biomedical field to conduct further investigation. The entire book is classified into three levels. It starts with the first level, which presents the single physical fields including structural analysis, fluid simulation, thermal analysis, and acoustic modeling. Then, the second level consists of various couplings between two physical fields covering structural thermal coupling, porous media, fluid structural interaction (FSI), and acoustic FSI. The third level focuses on multi-coupling that coupling with more than two physical fields in the model. Each part in all levels is organized as the physical feature, finite element implementation, modeling procedure in ANSYS, and the specific applications for biomedical engineering like the FSI study of Abdominal Aortic Aneurysm (AAA), acoustic wave transmission in the ear, and heat generation of the breast tumor. The book should help for the researchers and graduate students conduct numerical simulation of various biomedical coupling problems. It should also provide all readers with a better understanding of various couplings.

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

by Dr Ping Zhou Dr Dingsheng Lin Dr Dan M. Ionel Dr Mircea Popescu Dr Frede Blaabjerg Dr Vandana Rallabandi Dr David Staton Marius Rosu

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Multiphysics and Multiscale Modeling: Techniques and Applications

by Young W. Kwon

Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body

Multiple Abiotic Stress Tolerances in Higher Plants: Addressing the Growing Challenges

by Yuri Shavrukov N. K. Gupta R. K. Singhal Nikolai Borisjuk

In the last 50 years, classical breeding has played a significant role in achieving higher crop productivity, but major crops have reached a plateau in their yield potential. Therefore, the current focus for sustainable intensification of agriculture is the use of biotechnological approaches to enhance the yield potential by combating the yield losses that occur due to abiotic stresses. The abiotic stresses are governed by multigenes, and therefore, a holistic approach is needed to get success in imparting stress tolerance to enhance the yield potential of our crops. Plants face multiple stress conditions during their life stages and adopt several physiological, biochemical, and molecular strategies to combat that, which are sometimes not sufficient to survive, particularly crop plants. The climate change era has created a need to understand the abiotic stresses in a holistic way. Therefore, a deep understanding of multiple abiotic stress mechanisms is necessary to develop crops tolerant to climate fluctuation. With this background, the outline of this book covers the following features:• Agriculture sustainability and molecular understanding of multiple stress tolerance• Systems biology for life-history strategies, conventional and genomic approaches above and underground• Genetic resources and molecular understanding of seed priming• Molecular signaling compounds, cell signal transduction, and crosstalk between plant growth hormones and regulators• Roles Transcription factors, LEA proteins, reactive oxygen species and alternative oxidase• Genome editing, metabolomics, and ‘omics’ technologies

Multiple Action-Based Design Approaches to Antibacterials

by John Bremner

This book covers intentional design aspects for combinations of drugs, single-molecule hybrids with potential or actual multiple actions, pro-drugs which could yield multiple activity outcomes, and future possibilities. The approach of the book is interdisciplinary, and it provides greater understanding of the complex interplay of factors involved in the medicinal chemistry design and laboratory development of multiply active antibacterials. The scope of the book appeals to readers who are researching in the field of antibacterials using the approach of medicinal chemistry design and drug development.

Multiple Comparisons for Bernoulli Data (SpringerBriefs in Statistics)

by Taka-aki Shiraishi

This book focuses on multiple comparisons of proportions in multi-sample models with Bernoulli responses. First, the author explains the one-sample and two-sample methods that form the basis of multiple comparisons. Then, regularity conditions are stated in detail. Simultaneous inference for all proportions based on exact confidence limits and based on asymptotic theory is discussed. Closed testing procedures based on some one-sample statistics are introduced. For all-pairwise multiple comparisons of proportions, the author uses arcsine square root transformation of sample means. Closed testing procedures based on maximum absolute values of some two-sample test statistics and based on chi-square test statistics are introduced. It is shown that the multi-step procedures are more powerful than single-step procedures and the Ryan–Einot–Gabriel–Welsch (REGW)-type tests. Furthermore, the author discusses multiple comparisons with a control. Under simple ordered restrictions of proportions, the author also discusses closed testing procedures based on maximum values of two-sample test statistics and based on Bartholomew's statistics. Last, serial gatekeeping procedures based on the above-mentioned closed testing procedures are proposed although Bonferroni inequalities are used in serial gatekeeping procedures of many.

Multiple Criteria Decision Making Applications in Environmentally Conscious Manufacturing and Product Recovery

by Surendra M. Gupta Mehmet Ali Ilgin

In order to ensure environmentally responsible production and disposal of products, local governments are imposing stricter environmental regulations, some of which even require manufacturers to take back their products at the end of the product's useful life. These government regulations, together with increasing environmental awareness, have forced manufacturers to invest in environment-conscious manufacturing. The multiple Criteria Decision Making Techniques presented in this book can be employed to solve the problems of environment-conscious manufacturers in product design, logistics, disassembly and remanufacturing.

Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems

by Theodor Stewart Jyrki Wallenius Boris Naujoks Matthias Ehrgott

In the twenty-first century the sustainability of energy and transportation systems is on the top of the political agenda in many countries around the world. Environmental impacts of human economic activity necessitate the consideration of conflicting goals in decision making processes to develop sustainable systems. Any sustainable development has to reconcile conflicting economic and environmental objectives and criteria. The science of multiple criteria decision making has a lot to offer in addressing this need. Decision making with multiple (conflicting) criteria is the topic of research that is at the heart of the International Society of Multiple Criteria Decision Making. This book is based on selected papers presented at the societies 19th International Conference, held at The University of Auckland, New Zealand, from 7th to 12th January 2008 under the theme "MCDM for Sustainable Energy and Transportation Systems''.

Multiple Cropping And Tropical Farming Systems

by Willem C. Beets

This book covers the uses of tropical farming systems in tropics of mixed, strip, relay, sequential and multistorey cropping. It discusses the aspects of the tropical farming systems including their history and agronomy and the plant inter-relationship within them.

Refine Search

Showing 47,601 through 47,625 of 84,423 results