- Table View
- List View
Nanofiltration Membranes: Synthesis, Characterization, and Applications
by Ahmad Fauzi Ismail Lau Woei JyeCovering fabrication, characterization, and applications nanofiltration (NF) membranes, this book provides a comprehensive overview of the development of NF membrane technology over the past decade. It uniquely covers a variety of fabrication techniques, comparing the procedures of each technique to produce polymeric membranes of different morphologies. The book also discusses advances in the materials used in thin film composite (TFC) polyamide membrane fabrication and their influences on properties with respect to structural and separation characteristics. A comprehensive review on NF characterization methods and techniques is provided, assessing physical and chemical properties and separation characteristics and stability. Technical challenges in fabricating a new generation of NF membranes are also reviewed and the possible approaches to overcome the challenges are provided. The book concludes with relevant case studies on the use of NF membranes in industrial implementation of both aqueous and nonaqueous media. Details the latest progress on the fabrication techniques of asymmetric and composite NF membranes. Discusses characterization methods used in assessing membrane physical/chemical properties, separation characteristics, and performance stability. Describes the potential of advanced materials in improving properties of polyamide selective layer as well as microporous substrate. Reviews the technical challenges in fabricating a new generation of composite membrane—thin film nanocomposite (TFN) membrane—possible approaches to overcome challenges. Offers case studies on the applications of NF membranes for both aqueous and nonaqueous media.
Nanofiltration for Sustainability: Reuse, Recycle and Resource Recovery
by Abdul Wahab MohammadThis book provides a novel exploration of the application of nanofiltration membrane technology for sustainability in various industries, situated in view of recent breakthroughs and the use of reuse, recycle and resource recovery approaches. Moving from a comprehensive discussion of nanofiltration membrane processes to case studies and real-world applications of nanofiltration technology across society, both successes and potential limitations are considered. Features: Detailed discussion of the fundamentals of nanofiltration technology The concepts of reuse, recycle and resource recovery using nanofiltration technology are explored in combination with other technologies to advance circular economy Considered across a range of industries, such as textiles, oil, gas, agriculture and pharmaceutics Written in a thoroughly detailed manner, this book is an essential guide for industry professionals interested in sustainability and working toward a circular economy. Comprehensive discussions of the fundamental processes underpinning nanofiltration technology also make this book particularly appealing to students of industrial chemistry.
Nanofiltration: Principles, Applications, and New Materials
by Andrea Iris SchäferAn updated guide to the growing field of nanofiltration including fundamental principles, important industrial applications as well as novel materials With contributions from an international panel of experts, the revised second edition of Nanofiltration contains a comprehensive overview of this growing field. The book covers the basic principles of nanofiltration including the design and characterizations of nanofiltration membranes. The expert contributors highlight the broad ranges of industrial applications including water treatment, food, pulp and paper, and textiles. The book explores photocatalytic nanofiltration reactors, organic solvent nanofiltration, as well as nanofiltration in metal and acid recovery. In addition, information on the most recent developments in the field are examined including nanofiltration retentate treatment and renewable energy-powered nanofiltration. The authors also consider the future of nanofiltration materials such as carbon- as well as polymer-based materials. This important book: Explores the fast growing field of the membrane process of nanofiltration Examines the rapidly expanding industrial sector's use of membranes for water purification Covers the most important industrial applications with a strong focus on water treatment Contains a section on new membrane materials, including carbon-based and polymer-based materials, as well as information on artificial ion and water channels as biomimetic membranes Written for scientists and engineers in the fields of chemistry, environment, food and materials, the second edition of Nanofiltration provides a comprehensive overview of the field, outlines the principles of the technology, explores the industrial applications, and discusses new materials.
Nanofins
by Navdeep Singh Debjyoti BanerjeeNanofins Science and Technology describes the heat transfer effectiveness of polymer coolants and their fundamental interactions with carbon nanotube coatings that act as nanofins. Heat transfer at micro/nano-scales has attracted significant attention in contemporary literature. This has been primarily driven by industrial requirements where significant decrease in the size of electronic devices/chips with concomitant enhancement in the heat flux have caused challenging needs for cooling of these platforms. With quantum effects kicking in, traditional cooling techniques need to be replaced with more effective technologies. A promising technique is to enhance heat transfer by surface texturing using nanoparticle coatings or engineered nanostructures. These nanostructures are termed as nanofins because they augment heat transfer by a combination of surface area enhancement as well as liquid-solid interactions at the molecular scale.
Nanofluidics
by Efstathios E. Stathis MichaelidesThis volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observations Presents the theory and experimental results for both thermodynamic and transport properties Examines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficients Combines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensions Conducts an holistic examination of the material from more than 500 archival publications
Nanofluidics: An Introduction
by Zhigang LiThis book provides an introduction to nanofluidics in a simple manner and can be easily followed by senior undergraduate students, graduate students, and other researchers who have some background in fluid mechanics. The book covers the main topics about the fundamentals of nanofluidics and how it differs from classic fluid mechanics. It also describes the methodologies of nanofluidics, including numerical approaches, e.g., molecular dynamics simulation and experimental techniques. Fundamental physics and new phenomena in nanofluidics are the major concerns of this book. The author goes on to discuss nanocofinements and the parameters that affect the fluid dynamics at the nanoscale and make flow analysis complex. These parameters accommodate rich, new flow phenomena that may not be observed at the macro- and microscale. Although not all of the new phenomena will find widespread applications, the physics underlying these new phenomena may offer insights for other fields. This is one of the reasons why this book emphasizes the mechanisms of various flow fashions. Explores the unique characteristics of nanoscale flows and related properties Reviews the latest research of nanoscale ion transport and its applications Discusses the fluid flows in nanoconfinements in a unique manner based on the author's original research Incorporates important applications of nanofluidics throughout.
Nanofluids and Nano Composites for Energy Systems (Advances in Sustainability Science and Technology)
by Pradeep G. Siddheshwar Dharmendra Tripathi Ravi Kumar Sharma Khaleed S. MekheimerThis book presents a very useful and easily comprehensible/valuable collection of experimental and mathematical studies on nanofluids, nanocomposites, and addresses current and future applications. This book serves as a ready reference for researchers working in the areas of dynamics of nanofluids. This book points toward technical expansions linked with energy, nanotechnology applications, energy storage, solar photovoltaic, and other related areas. This book provides insights related to various forms of applications in renewable energy systems and other industrial applications.
Nanofluids and Their Engineering Applications
by Avinash Balakrishnan Tubati Nageswara Rao K.R.V. SubramanianNanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. <P><P>Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment
Nanofluids for Heat Exchangers
by Abdul Wahab Hafiz Muhammad Ali Ali HassanThis book describes the importance of heat transfer in heat exchangers, and fluids properties play a vital role to increase heat transfer rate translating the size of the equipment and cuts in the capital and running cost in the long term. Nanofluids applications in heat exchangers will help to improve the thermophysical properties of the fluid and therefore heat transfer. And, this book explains the enhancing mechanisms of heat transfer by employing nanofluids in heat exchangers. A critical discussion will enable to estimate the pros and cons of such fluids in different types of heat exchangers. Prevailing working conditions for short- and long-term implementation of various types of nanofluids will be discussed and introduced to the readers. This book helps the researchers, scientist and academicians working in the domain to be able to get a comprehensive knowledge at one place regarding the preparation, properties, measurements, data reduction, characteristics and applications of nanofluids in heat exchangers.
Nanofuel: Boosting Performance with Nanotech Nutrients (Smart Nanomaterials Technology)
by Ayan Chatterjee Tanmay Sarkar Slim SmaouiThis book provides a groundbreaking exploration of how nanotechnology is revolutionizing sports nutrition. Offering a blend of cutting-edge science and practical applications, it reveals how nano-enhanced nutrients can optimize athletic performance, recovery, and overall health. The book aims to solve the problem of inefficient nutrient delivery in sports supplements. It provides readers with scientifically backed insights into how nanotechnology can overcome these challenges, offering practical solutions for athletes and sports nutrition professionals. Targeted at sports nutritionists, athletic trainers, researchers, and health-conscious athletes, this book is an essential resource for anyone interested in the future of sports nutrition and the transformative potential of nanotechnology.
Nanofuture: What's Next For Nanotechnology
by K. Eric Drexler J. Storrs HallNanotechnology is the science of designing and building machines at the molecular and atomic levels. Dr. Hall — a leading researcher on the frontiers of nanotechnology who has designed for NASA — describes nanotechnology in a very accessible way, so that anyone can understand what it’s about, what it could do, and what it can’t do. He puts it into historical context, explaining how previous technological developments have affected us, how nanotechnology fits into the historical trends for technologies ranging from motors to medicine, and how the continuation of these trends, with nanotechnology as a strong determining factor, will have a profound impact on the future. <p><p> Together with its sister science of biotechnology, nanotechnology has the potential to alter the very human race, change who we are. Can this possibly be good? Should it be encouraged or opposed? No one knows for sure, but the basis for informed thought can be found in these exciting, stimulating pages, which will open the doors of the future to you.
Nanogenerators: Basic Concepts, Design Strategies, and Applications
by InamuddinThis book provides an in-depth review of the history, fundamental theory, design strategies, and applications of nanogenerators. Working principles, device mechanisms, material characteristics, types of nanogenerators, and their different uses are fully explored.Top researchers in the field of sustainable technology from different backgrounds and fields contribute their expertise to deliver a must-have practical resource for students, academic researchers, and industry professionals.FEATURES Describes the fundamental aspects and theory of nanogenerators Explores design strategies including material assessment based upon planned application Tailors the introduction and essential concept discussion for the industrial and research community Explores current applications, existing challenges, and the future outlook for the field
Nanohertz Gravitational Wave Astronomy
by Stephen R. TaylorNanohertz Gravitational Wave Astronomy explores the exciting hunt for low frequency gravitational waves by using the extraordinary timing precision of pulsars. The book takes the reader on a tour across the expansive gravitational-wave landscape, from LIGO detections to the search for polarization patterns in the Cosmic Microwave Background, then hones in on the band of nanohertz frequencies that Pulsar Timing Arrays (PTAs) are sensitive to. Within this band may lie many pairs of the most massive black holes in the entire Universe, all radiating in chorus to produce a background of gravitational waves. The book shows how such extra-Galactic gravitational waves can alter the arrival times of radio pulses emanating from monitored Galactic pulsars, and how we can use the pattern of correlated timing deviations from many pulsars to tease out the elusive signal. The book takes a pragmatic approach to data analysis, explaining how it is performed in practice within classical and Bayesian statistics, as well as the numerous strategies one can use to optimize numerical Bayesian searches in PTA analyses. It closes with a complete discussion of the data model for nanohertz gravitational wave searches, and an overview of the past achievements, present efforts, and future prospects for PTAs.The book is accessible to upper division undergraduate students and graduate students of astronomy, and also serves as a useful desk reference for experts in the field. Key features: Contains a complete derivation of the pulsar timing response to gravitational waves, and the overlap reduction function for PTAs. Presents a comprehensive overview of source astrophysics, and the dynamical influences that shape the gravitational wave signals that PTAs are sensitive to. Serves as a detailed primer on gravitational-wave data analysis and numerical Bayesian techniques for PTAs.
Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration (Carbon Nanostructures)
by Rasel DasThis book introduces carbon nanotubes as a matrix for efficient nanohybrid catalysis. The preparation and use of such materials in ultra-grade water purification is described. Simple chemical methods for purification and functionalization of carbon nanotubes prior to their use is also detailed. The author also discusses the potential use of nanotube-based nanobiohybrid catalysts in the removal of organic pollutants.
Nanohybrid Materials for Treatment of Textiles Dyes (Smart Nanomaterials Technology)
by Mohammad Jawaid Akil Ahmad Mohamad Nasir Mohamad Ibrahim Asim Ali Yaqoob Mohammed B. AlshammariThis book covers the various aspects of nanohybrid materials and its composites for their application in treatment of toxic textiles dyes for cleaning the environment especially water and wastewater. The book first looks into the various preparation and characterization techniques for nanohybrid materials. The replacement of other conventional materials with highly efficient (high surface area, pore size, and chemical and mechanical strength) nanohybrid materials and their application in the field of environmental purification through treatment of textile dyes is highlighted in the later part of the book. The book caters to students, researchers, and scientists who are working in the field of wastewater treatment for incorporating novel materials to remove toxic textile dyes from contaminated wastewater.
Nanohybrid Materials for Water Purification (Composites Science and Technology)
by Sarat K. SwainThis book comprehensively reviews the key topics in the area of nanocomposites and hybrid materials used for waste water treatment and purification. It covers materials chemistry, various synthesis approaches and properties of these nanomaterials for the different water purification techniques. It provides new direction to the readers to better understand the chemistry behind these materials and the methods to improve their properties. This book will be a very valuable reference source for graduates and postgraduates, engineers, research scholars (primarily in the field of material science, water, nanoscience and nanotechnology), material scientists, researchers in the water-related area, scientists working in water treatment plans and pollution mitigation industries.
Nanohybrids in Environmental & Biomedical Applications (Monograph Series in Physical Sciences)
by Surender Kumar SharmaHeterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes key examples to motivate deeper studies, including nanomaterial-based hyperthermia treatment of cancer, nanohybrids for water purification, nanostructures used in the removal or detection of bioagents from waste water, and so on. Features Presents state of the art research on heterostructured nanomaterials, from their synthesis and physiochemical properties to current environmental and biological applications. Includes details on toxicity and risk assessment of multifunctional nanomaterials. Discusses recent developments and utilization in healthcare by leading experts. Introduces the main features of functionalization of nanomaterials in terms of desired size, shape, phase composition, surface functionalization/coating, toxicity, and geometry. Emphasizes practical applications in the environmental and biomedical sectors.
Nanoimaging
by Michael J. Kruhlak Alioscka A. SousaFor more than a century, microscopy has been a centerpiece of extraordinary discoveries in biology. Along the way, remarkable imaging tools have been developed allowing scientists to dissect the complexity of cellular processes at the nano length molecular scales. Nanoimaging: Methods and Protocols presents a diverse collection of microscopy techniques and methodologies that provides guidance to successfully image cellular molecular complexes at nanometer spatial resolution. The book's four parts cover: (1) light microscopy techniques with a special emphasis on methods that go beyond the classic diffraction-limited imaging; (2) electron microscopy techniques for high-resolution imaging of molecules, cells and tissues, in both two and three dimensions; (3) scanning probe microscopy techniques for imaging and probing macromolecular complexes and membrane surface topography; and (4) complementary techniques on correlative microscopy, soft x-ray tomography and secondary ion mass spectrometry imaging. Written in the successful format of the Methods in Molecular BiologyTM series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Nanoimaging: Methods and Protocols highlights many of the most exciting possibilities in microscopy for the investigation of biological structures at the nano length molecular scales.
Nanoimaging - Future of Precision Medicine
by Sikandar ShaikhThe book covers all the aspects of the advances in nanoimaging. It provides a step-by-step overview of the various aspects of nanoimaging from the basics like nanoparticle production. It describes the different applications of nanoparticles across multiple imaging modalities and their applications in oncology, cardiology, neurology, infection and inflammation and many other conditions. The book also covers the detailed use of the different modalities like ultrasound, CT, MRI, PET-CT, PET-MRI, and nuclear medicine for various conditions. It describes various nanoparticles, nano biomarkers and nanoprobes used for multiple applications. Several chapters provide detailed information on the molecular level. Additionally, the book discusses nano theranostics - a newer concept used in molecular imaging for diagnosing the disease and its therapeutic purpose. It provides basic and detailed information on the use of nanoimaging in various conditions and pathologies along with therapeutic options. The book is helpful for residents, fellows, students and various specialists, such as radiologists, molecular imaging specialists, molecular biologists, oncologists, hematologists, surgeons, biomedical engineers, and various specialities involving the use of nanoimaging.
Nanoimprint Lithography: An Enabling Process for Nanofabrication
by Weimin ZhouNanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.
Nanoindentation
by Anthony C. Fischer-CrippsNanoindentation, Third Edition gives a detailed account of the most up-to-date research in this important field of materials testing. As in previous editions, extensive theoretical treatments are provided and explained in a clear and consistent manner that will satisfy both experienced and novice scientists and engineers. Additionally, numerous examples of the applications of the technique are provided directly from manufacturers of nanoindentation instruments. A helpful series of appendices provides essential reference information that includes a list of frequently asked questions. The new edition has been restructured to provide results of the latest research and developments in the field of mechanical testing while retaining the essential background and introductory, but authoritative nature, of the previous editions. The new edition also expands on the instrumentation and applications chapters by including material sourced direct from the instrument manufacturers in this field. Aimed at graduate student level, this book is designed to fill a need associated with the use of nanoindentation as a quantitative test method for mechanical properties of small volumes of materials.
Nanoindentation of Natural Materials: Hierarchical and Functionally Graded Microstructures
by Arjun Dey Anoop Kumar MukhopadhyayNanoindentation of Natural Materials: Hierarchical and Functionally Graded Microstructures provides a systematic introduction and review of state-of-the-art statistical hierarchical and functionally graded structures found in bone, teeth, hair, and scales, from a nanoindentation perspective, including detailed microstructure and composition. It covers the basics of hierarchical and functionally graded structures and nanoindentation techniques and detailed discussion with correlation micro/nano mechanical-structures The book includes practical issues backed with experimental data
Nanoliquid Processes for Electronic Devices: Developments of Inorganic Functional Liquid Materials and Their Processing
by Tatsuya ShimodaThis book summarizes the results of the research on how to make small electronic devices with high properties by using simple liquid processes such as coating, self-assembling and printing, especially focusing on devices composed of silicon and oxide materials. It describes syntheses and analyses of solution materials, formations of solid thin films from solutions, newly developed patterning methods to make devices, and characterization of the developed devices. In the first part of the book, the research on liquid silicon (Si) materials is described. Because the use of a liquid material is a quite new idea for Si devices, this book is the first one to describe liquid Si materials for electronic devices. Si devices as typified by MOS-FET have been produced by using solid and gas materials. This volume precisely describes a series of processes from material synthesis to device fabrication for those who are interested and are/will be engaged in liquid Si-related work. In the latter part of the book, a general method of how to make good oxide films from solutions and a new imprinting method to make nanosized patterns are introduced. For making oxide films with high quality, the designing of the solution is crucial. If a solution is designed properly, a gel material called "cluster gel" can be formed which is able to be imprinted to form nanosized patterns. The anticipated readers of this book are researchers, engineers, and students who are interested in solution and printing processes for making devices. More generally, this book will also provide guidelines for corporate managers and executives who are responsible for making strategies for future manufacturing processes.
Nanomagnetic Actuation in Biomedicine: Basic Principles and Applications
by Jon Dobson Carlos RinaldiThe manipulation and control of cells and sub-cellular structures through magnetic nanoparticle-based actuation is a relatively new technique that has led to novel and exciting biomedical applications. Nanomagnetic actuation is being used in laboratory studies of stem cells to determine how these mechanical cues can be used to control stem cell differentiation for regenerative medicine applications. This book explores this rapidly expanding field. It will interest industry bioscientists and biomedical engineers as well as academics in cellular biomechanics, cell and tissue engineering, and regenerative medicine. Key Features Focuses on the fundamentals and applications of magnetic actuation Includes contributions by world-class researchers from several countries and is edited by a well-known researcher in this field Offers multidisciplinary coverage and applications Supplies extensive references at the end of each chapter
Nanomagnetism: An Interdisciplinary Approach
by Georgia C. PapaefthymiouNanomagnetism: An Interdisciplinary Approach provides a core foundation for understanding magnetic quantum-size effects at the nanoscale and their many applications across the disciplines. This textbook will be a valuable guide for students in new interdisciplinary courses in nanomagnetism and magnetic nanomaterials, an area that has experienced immense growth in the last two decades due to advancements in sample preparation, nanopatterning techniques and magnetic measurement instrumentation. The interdisciplinary nature of nanoscience also makes this book an ideal resource for scientists working in industrial laboratories and pharmaceutical and medical researchers looking to expand their understanding of the physics of magnetic probes. Key Features Discusses physical, chemical and nanotemplating synthesis techniques for the production of magnetic nanoparticles Covers experimental techniques for the determination of the macroscopic and microscopic magnetization of nanoparticles Discusses the role of nanomagnetism in high-density magnetic recording media, nanostructured permanent magnets, MRI imaging enhancement and magnetically guided drug delivery