- Table View
- List View
Molecular Aspects of Plant-Pathogen Interaction
by Archana Singh Indrakant K. SinghThe book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Molecular Astrophysics
by A. G. TielensFocusing on the organic inventory of regions of star and planet formation in the interstellar medium of galaxies, this comprehensive overview of the molecular universe is an invaluable reference source for advanced undergraduates through to entry-level researchers. It includes an extensive discussion of microscopic physical and chemical processes in the universe; these play a role in the excitation, spectral characteristics, formation, and evolution of molecules in the gas phase and on grain surfaces. In addition, the latest developments in this area of molecular astrophysics provide a firm foundation for an in-depth understanding of the molecular phases of the interstellar medium. The physical and chemical properties of gaseous molecules, mixed molecular ices, and large polycyclic aromatic hydrocarbon molecules and fullerenes and their role in the interstellar medium are highlighted. For those with an interest in the molecular universe, this advanced textbook bridges the gap between molecular physics, astronomy, and physical chemistry.
Molecular Bases of Anesthesia (Handbooks in Pharmacology and Toxicology)
by Eric Moody and Phil SkolnickMolecular Bases of Anesthesia provides a clear overview of the state of knowledge about anesthetic mechanisms at the molecular level of occurrence and focusing on the latest state-of-the-art techniques that relate to how anesthetic drugs cause unconsciousness. With contributions by leading experts, this timely book includes chapters on how
Molecular Basics of Liquids and Liquid-Based Materials (Physical Chemistry in Action)
by Katsura Nishiyama Tsuyoshi Yamaguchi Toshiyuki Takamuku Norio YoshidaThis book sheds light on the molecular aspects of liquids and liquid-based materials such as organic or inorganic liquids, ionic liquids, proteins, biomaterials, and soft materials including gels. The reader discovers how the molecular basics of such systems are connected with their properties, dynamics, and functions. Once the use and application of liquids and liquid-based materials are understood, the book becomes a source of the latest, detailed knowledge of their structures, dynamics, and functions emerging from molecularity. The systems discussed in the book have structural dimensions varying from nanometers to millimeters, thus the precise estimation of structures and dynamics from experimental, theoretical, and simulation methods is of crucial importance. Outlines of the practical knowledge needed in research and development are helpfully included in the book.
Molecular Basis and Emerging Strategies for Anti-aging Interventions
by Syed Ibrahim Rizvi Ufuk ÇakatayThis book describes the nature of aging, age-related disorders, and the molecular principles of emerging strategies for anti-aging interventions, while also discussing the discovery of targets for geroprotective drugs. Although significant medical advances in the treatment and eradication of life-threatening conditions such as cardiovascular and infectious disease have been made over the past five decades, the prevalence of age-related disorders still remains high in older populations. Intervening into aging is the next frontier in contemporary medicine, and will be of increasing importance over time, as other sources of poor health are combated more and more successfully. Given the universal interest in anti-aging strategies, the book will appeal to a very broad audience. It addresses a diverse range of anti-aging interventions – including stem cells, autophagy, senolytics, anti-inflammatory methods, and telomerase induction – that will be of interest to scientists and researchers from various disciplines in the life sciences.
Molecular Basis of Aging (CRC Press Revivals)
by Alvaro Macieira-CoelhoUsing a new, integrative approach, Molecular Basis of Aging describes the aging phenomenon within mammalian organisms from the perspective of changes in information storage and coordination between hierarchical orders of structure. This unique approach provides the reader with a thorough insight into the evolution of molecular, cellular, tissue, and organ systems and processes in mammals. This informative volume contains up-to-date reviews of:
Molecular Basis of Developmental and Stem Cell Regulation: Classical Models Revised (Results and Problems in Cell Differentiation #72)
by Hisato KondohThis book provides a comprehensive overview of the molecular basis of developmental and stem cell regulation. It revisits some of the classical models of developmental biology and puts them in context with the findings of modern stem cell research and developmental biology. Biomedical research is embarking on a new era due to new tools, which are exemplified by stem cell technologies, single-cell transcriptome analysis, and live imaging at a single-cell resolution. Publications based on cutting-edge technologies do often not provide the readers with deep biological backgrounds. This causes the risk that precious data are reduced to highly specific descriptions without sufficient biological contexts.Contemporary developmental biology on the other hand as written in many textbooks, is to a significant extent based on conceptions backdated many decades ago, and is not necessarily supported by recent findings. Yet, the prevailing classical notions tend to mislead modern biomedical researches.This book not only presents current models for developmental processes but also reinterprets and re-evaluates classic observations, thus linking classical and modern worlds of developmental biology. Spanning from molecular mechanisms to highly embryological matters it provides a bridge between these different disciplines.Written for advanced students of developmental and stem cell biology, researchers and teaching scholars, this book provides a new road map to modern developmental biology and stem cell biology.
Molecular Basis of Health and Disease
by Undurti N. DasThe book describes how the balance between pro- and anti-inflammatory molecules is related to health and disease. It is suggested that many diseases are initiated and their progress is influenced by inflammatory molecules and a decrease in the production and/or action of anti-inflammatory molecules and this imbalance between pro- and anti-inflammatory molecules seems to have been initiated in the perinatal period. This implies that strategies to prevent and manage various adult diseases should start in the perinatal period. An alteration in the metaolism of essential fatty acids and their anti-inflammatory molecules such as lipoxins, resolvins, protecitns, maresins and nitrolipids seems to play a major role in the pathobiology of several adult diseases. Based on these concepts, novel therapeutic approaches in the management of insulin resistance, obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, lupus, rheumatoid arthritis and other auto-immune diseases are presented. Based on all these evidences, a unified concept that several adult diseases are due to an alteration in the balance between pro- and anti-inflammatory molecules is discussed and novel methods of their management are presented.
The Molecular Basis of Human Cancer
by William B. Coleman Gregory J. TsongalisThis book covers the concepts of molecular medicine and personalized medicine. Subsequent chapters cover the topics of genomics, transcriptomics, epigenomics, and proteomics, as the tools of molecular pathology and foundations of molecular medicine. These chapters are followed by a series of chapters that provide overviews of molecular medicine as applied broadly to neoplastic, genetic, and infectious diseases, as well as a chapter on molecular diagnostics. The volume concludes with a chapter that delves into the promise of molecular medicine in the personalized treatment of patients with complex diseases, along with a discussion of the challenges and obstacles to personalized patient care. The Molecular Basis of Human Cancer, Second Edition, is a valuable resource for oncologists, researchers, and all medical professionals who work with cancer.
Molecular Basis of Multiple Sclerosis
by Andreas Lutterotti Roland MartinDespite major efforts by the scientific community over the years, our understanding of the pathogenesis or the mechanisms of injury of multiple sclerosis is still limited. Consequently, the current strategies for treatment and management of patients are limited in their efficacy. The mechanisms of tissue protection and repair are probably even less understood. One reason for these limitations is the enormous complexity of the disease and every facet of its pathogenesis, the mechanisms of tissue injury, the diagnostic procedures and finally the efficacy of treatments and their side effects. The aim of this book is to review the most recent advances made in this highly complex field.
Molecular Basis of Oxidative Stress
by Frederick A. VillamenaSets the stage for the development of better diagnostic techniques and therapeuticsFeaturing contributions from an international team of leading clinicians and biomedical researchers, Molecular Basis of Oxidative Stress reviews the molecular and chemical bases of oxidative stress, describing how oxidative stress can lead to the development of cancer and cardiovascular and neurodegenerative diseases. Moreover, it explains the potential role of free radicals in both the diagnosis and the development of therapeutics to treat disease.Molecular Basis of Oxidative Stress is logically organized, beginning with a comprehensive discussion of the fundamental chemistry of reactive species. Next, the book:Presents new mechanistic insights into how oxidative damage of biomolecules occursExamines how these oxidative events effect cellular metabolismInvestigates the role of oxidative stress in the pathogenesis of cancer, neurodegenerative disease, cardiovascular disease, and cystic fibrosisExplores opportunities to improve the diagnosis of disease and the design of new therapeutic agentsReaders will find much novel information, including new radical chemistries and the latest discoveries of how free radicals react with biomolecules. The contributors also present recent findings that help us better understand the initiation of oxidative stress and the mechanisms leading to the pathogenesis of various diseases.Throughout the book, the use of molecular structures helps readers better understand redox chemistry. In addition, plenty of detailed figures illustrate the mechanisms of oxidative stress and disease pathogenesis.Examining everything from the basic chemistry of oxidative stress to the pathogenesis of disease, Molecular Basis of Oxidative Stress will help readers continue to explore the nature of oxidative stress and then use that knowledge to develop new approaches to prevent, detect, and treat a broad range of disease conditions.
Molecular Basis of Oxidative Stress: Chemistry, Toxicology, Disease Pathogenesis, Diagnosis, and Therapeutics
by Frederick A. Villamena Henry Jay FormanIn-depth resource on mechanisms of oxidative stress and damage and the role of free radicals in disease, diagnosis, and therapeutics Molecular Basis of Oxidative Stress is a comprehensive resource on the molecular and chemical bases of oxidative stress, providing insight on various diseases caused by oxidative stress (cancer, cardiovascular, neurodegenerative) and the role of reactive oxygen species (ROS) in disease pathogenesis along with in-depth knowledge about the mechanisms of oxidative stress and damage, free radical chemistry, and the role of free radicals in disease, diagnosis, and therapeutics. Thoroughly updated and expanded to reflect advances in the years since its original publication, the Second Edition includes new chapters covering topics like oxidative stress mechanisms, biomarkers, and therapeutic strategies in the management and treatment of diseases. The disease section features 10 new emerging diseases, including kidney and eye diseases and COPD. This Second Edition also covers developments in the field in the last several years, such as an increase in mortality rate from air pollution and obstructive pulmonary diseases in which exogenous oxidants are initiators. Written by a team of highly qualified academics, Molecular Basis of Oxidative Stress discusses sample topics including: Classification, physico-chemical properties, sources, and detection of reactive species and etiology of COPD from cigarette smoke and pollution Oxidative, reductive and indirect non-redox modifications of key biomolecular systems such as lipids, proteins, and DNA by reactive species Gene expression of antioxidant defense enzymes, mitochondrial dysfunction and aberrant activation of NOX and cell signaling Biomarkers of oxidative stress in neurodegenerative diseases and emerging fields inbiomarker discovery such as cysteinylated albumin and nitroalkene fatty acids Imparting strong foundational knowledge of redox chemistry, chemistry of oxidative damage and mechanisms of oxidative stress, and oxidative stress-mediated disease pathogenesis, Molecular Basis of Oxidative Stress is an essential reference for both novice and advanced toxicologists, biochemists, and pharmacologists, along with clinical and medical scientists in various fields such as oncology, cardiovascular, andneuroscience.
Molecular Basis of Resilience: Adapting to a Changing Environment
by Patrick L. IversenThis book illuminates mechanisms of resilience. Threats and defense systems lead to adaptive changes in gene expression. Environmental conditions may dampen adaptive responses at the level of RNA expression. The first seven chapters elaborate threats to human health. Human populations spontaneously invade niche boundaries exposing us to threats that drive the resilience process. Emerging RNA viruses are a significant threat to human health. Antiviral drugs are reviewed and how viral genomes respond to the environment driving genome sequence plasticity. Limitations in predicting the human outcome are described in “nonlinear anomalies.” An example includes medical countermeasures for Ebola and Marburg viruses under the “Animal Rule.” Bacterial infections and a review of antibacterial drugs and bacterial resilience mediated by horizontal gene transfer follow. Chapter 6 shifts focus to cancer and discovery of novel therapeutics for leukemia. The spontaneous resolution of AML in children with Down syndrome highlights human resilience. Chapter 7 explores chemicals in the environment. Examples of chemical carcinogenesis illustrate how chemicals disrupt genomes. Historic research ignored RNA damage from chemically induced nucleic acid damage. The emergence of important forms of RNA and their possible role in resilience is proposed. Chapters 8-10 discuss threat recognition and defense systems responding to improve resilience. Chapter 8 describes the immune response as a threat recognition system and response via diverse RNA expression. Oligonucleotides designed to suppress specific RNA to manipulate the immune response including exon-skipping strategies are described. Threat recognition and response by the cytochrome P450 enzymes parallels immune responses. The author proposes metabolic clearance of small molecules is a companion to the immune system. Chapter 10 highlights RNA diversity expressed from a single gene. Molecular Resilience lists paths to RNA transcriptome plasticity forms the molecular basis for resilience. Chapter 11 is an account of ExonDys 51, an approved drug for the treatment of Duchenne muscular dystrophy. Chapter 12 addresses the question “what informs molecular mechanisms of resilience?” that drives the limits to adaptation and boundaries for molecular resilience. He speculates that radical oxygen, epigenetic modifications, and ligands to nuclear hormone receptors play critical roles in regulating molecular resilience.
Molecular Beacons: Signalling Nucleic Acid Probes, Methods, and Protocols
by Oliver Seitz Andreas MarxFrom probe design to applications in clinical settings, this book provides a diverse set of instructive examples, guided by experts in the field who offer easy-to-follow experimentals. The book first offers an introduction to the basic principles of fluorescence and then describes applications of fluorogenic probes in real-time PCR, which currently is the gold standard for quantitative DNA and RNA analysis. Coverage extends the potential of realtime as well as advocates simplifications of the probe technologies. It also presents a new simplified molecular beacon design, EasyBeacons, and demonstrates the utility in DNA methylation profiling.
Molecular Beacons
by Chaoyong James Yang Weihong TanMolecular Beacons explains working principle of molecular beacons, discusses their design, synthesis, purification and characterization, explores their thermodynamic and kinetic properties, and more importantly, reviews their in vivo and in vitro applications with the emphasis on the design and modification of molecular beacons for in vivo mRNA imaging applications. This book is designed to bring together in a single resource an organized and comprehensive view of molecular beacons and will be a valuable resource for academic, clinical and industrial scientists and graduate students who may consider exploring molecular beacons in their research or practice. Chaoyong James Yang is the Lu Jiaxi Professor of Chemistry at Xiamen University, China. Weihong Tan is a Distinguished Professor of Chemistry and Biomedical Engineering at Hunan University, China and also a University of Florida Distinguished Professor and V. T. and Louis Jackson Professor of Chemistry at the University of Florida, USA.
Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics (Wiley Series in Materials for Electronic & Optoelectronic Applications)
by Hajime Asahi Yoshiji HorikoshiCovers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
Molecular Beams in Physics and Chemistry: From Otto Stern's Pioneering Exploits to Present-Day Feats
by Bretislav Friedrich Horst Schmidt-BöckingThis Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.
Molecular Bio-Sensors and the Role of Metal Ions (Metal Ions in Life Sciences Series)
by Astrid Sigel Helmut Sigel Eva Freisinger Roland K.O. Sigel Thomas J. MeadeVolume 23, entitled Molecular Bio-Sensors and the Role of Metal Ions, of the series Metal Ions in Life Sciences (MILS) represents a milestone of contemporary progress and understanding of molecular bio-sensors for metal ions. It is bringing together the latest research in academia and industry, and it also emphasizes the spectrum of evolving regulations from regulatory bodies. This vibrant research area is covered by 31 internationally recognized experts. The impact of MILS-23 is manifested by more than 1300 references and close to 200 figures, more than 100 of them in color; further information is summarized in several tables. In conclusion, Volume 23 significantly advances our understanding of Molecular Bio-Sensors, it is therefore an essential resource for scientists working in the wide range from earth sciences, material sciences, physics, pharmacology, enzymology, analytical, organic, and inorganic biochemistry all the way through to medicine including the clinic. • It provides an understanding of the roles that metals play in living systems. • It offers an insight for the demands needed in the clinic. • It reveals the interplay between bio-sensors and therapies. The Series METAL IONS IN LIFE SCIENCES increases our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of Biological Inorganic Chemistry and coordinate the efforts of researchers in fields like biochemistry, inorganic chemistry, coordination chemistry, molecular and structural biology, enzymology, toxicology, environmental chemistry, biophysics, pharmacy, and medicine. The volumes deal with the formation, stability, structure, and reactivity of metal-containing biological compounds of low and high molecular weight. The metabolism and transport of metal ions and their complexes as well as new models of complicated natural structures and processes are in the focus. Consequently, the volumes are an essential source for researchers in the mentioned fields as well as for teachers preparing courses, e.g., in Bioinorganic Chemistry.
Molecular Biochemical Aspects of Cancer
by Undurti N. DasThis book discusses the role of genes, oncogenes, anti-oncogenes, free radicals, PUFAs, anti-oxidants, lipid peroxidation process, telomere, and angiogenesis on the origin of cancer, cell proliferation, and cancer in general. It includes a broad introduction to cancer cells; genes, oncogenes, and anti-oncogenes; and free radicals. In later chapters, it discusses in depth the relationship among free radicals, lipid peroxidation and anti-oxidants in cell proliferation. It also discusses aerobic and anaerobic metabolism and their relationship to cancer, as well as the Warburg effect and its potential in the development of new targets for cancer management. Based on these and other evidences, Molecular Biochemical Aspects of Cancer introduces a novel concept that suggests that selective enhancement of free radical generation in tumor cells could form a strategy to induce apoptosis of cancer cells employing bioactive lipids. It presents a new method of treatment of cancer using in vitro, in vivo and clinical data. This book will interest oncologists, scientists, molecular biologists, life scientists.
Molecular Biological Technologies for Ocean Sensing
by Sonia M. Tiquia-ArashiroThe development of ocean sensors remains a ripe area for future investigation from science, policy and systemsengineering standpoints. Clearly, there are many options forrealizing integrated molecular analytical sensing systems. The definition of key target molecules, detection methodsand signal transduction models largely remain to be determined.Moreover, there remains ahuge challenge of merging this new class of instrument with different deployment platforms, and supplying necessarypower and data telemetry infrastructure for their operation. Molecular Biological Technologies for Ocean Sensing features methods papers on the application of ecogenomic sensors on autonomous platforms in the ocean. Topics include the use of ecogenomic sensors as a tool in whole-cell and cell-free based detection and monitoring a suite of pathogens and biotoxins that are of public health concern; documenting species diversity, evolution and metabolic function; identification and quantification of aquatic organisms; and inferring metabolic potential and activities of microorganisms in the ocean. Each contribution focuses on the (1) functional requirements for detecting specific microorganisms and the genes that they harbor and express;(2) examples of research activities that take advantage of molecular detection technologies;(3) some of the challenges faced when projecting development and use of novel instruments that will utilize molecular techniques onboard autonomous platforms;and future directions. Bringing these advancements on autonomous platforms, monitoring required sample collection and processing schemes will differ from those currently used (i.e. biomedical diagnostics). This book is the first of its kind to compile current technologies for studying organisms in situ. It will aid in transfer technology to oceanographers, ecologists, microbiologists, and environmental scientists with needs for a remote, in-water sensing capability and for integration with larger scale observatory operations. With this network in place, there is a potential to bridge the gap among regulatory agencies and academics about how this kind of technology can be used for research and monitoring purposes.
Molecular Biology
by David P. Clark Nanette J. Pazdernik Michelle R. McGeheeMolecular Biology, Third Edition, provides a thoroughly revised, invaluable resource for college and university students in the life sciences, medicine, and related fields. This esteemed text continues to meet the needs of students and professors by offering new chapters on RNA, genome defense, and epigenetics, along with expanded coverage of RNAi, CRISPR, and more ensuring topical content for a new class of students. This volume effectively introduces basic concepts that are followed by more specific applications as the text evolves. Moreover, as part of the Academic Cell line of textbooks, this book contains research passages that shine a spotlight on current experimental work reported in Cell Press articles. These articles form the basis of case studies found in the associated online study guide that is designed to tie current topics to the scientific community.
Molecular Biology
by Stephen H. HowellIn this book, plant biology is considered from the perspective of plants and their surrounding environment, including both biotic and abiotic interactions. The intended audience is undergraduate students in the middle or final phases of their programs of study. Topics are developed to provide a rudimentary understanding of how plant-environment interactions span multiple spatiotemporal scales, and how this rudimentary knowledge can be applied to understand the causes of ecosystem vulnerabilities in the face of global climate change and expansion of natural resource use by human societies. In all chapters connections are made from smaller to larger scales of ecological organization, providing a foundation for understanding plant ecology. Where relevant, environmental threats to ecological systems are identified and future research needs are discussed. As future generations take on the responsibility for managing ecosystem goods and services, one of the most effective resources that can be passed on is accumulated knowledge of how organisms, populations, species, communities and ecosystems function and interact across scales of organization. "Molecular Biology"is intended to provide some of that knowledge, and hopefully provide those generations with the ability to avoid some of the catastrophic environmental mistakes that prior generations have made. "
Molecular Biology
by Michael O’donnell Michael M. Cox Jennifer A. DoudnaWritten and illustrated with unsurpassed clarity, Molecular Biology: Principles and Practice introduces fundamental concepts while exposing students to how science is done. The authors convey the sense of joy and excitement that comes from scientific discovery, highlighting the work of researchers who have shaped--and who continue to shape--the field today. See what's in the LaunchPad
Molecular Biology: Structure and Dynamics of Genomes and Proteomes
by Jordanka ZlatanovaMolecular Biology: Structure and Dynamics of Genomes and Proteomes second edition illustrates the essential principles behind the transmission and expression of genetic information at the level of DNA, RNA, and proteins. Emphasis is on the experimental basis of discovery and the most recent advances in the field while presenting a rigorous, yet still concise, summary of the structural mechanisms of molecular biology. Topics new to this edition include the CRISPR-Cas gene editing system, Coronaviruses – structure, genome, vaccine and drug development, and newly recognized mechanisms for transcription termination. The text is written for advanced undergraduate or graduate-level courses in molecular biology. Key Features · Highlights the experimental basis of important discoveries in molecular biology. · Thoroughly updated with new information on gene editing tools, viruses, and transcription mechanisms, termination and antisense. · Provides learning objectives for each chapter. · Includes a list of relevant videos from the Internet about the topics covered in the chapter.
The Molecular Biology and Biochemistry of Fruit Ripening
by Mervin Poole Gregory A. Tucker Graham Seymour James GiovannoniA comprehensive and mechanistic perspective on fruit ripening, emphasizing commonalities and differences between fruit groups and ripening processes. Fruits are an essential part of the human diet and contain important phytochemicals that provide protection against heart disease and cancers. Fruit ripening is of importance for human health and for industry-based strategies to harness natural variation, or genetic modification, for crop improvement.This book covers recent advances in the field of plant genomics and how these discoveries can be exploited to understand evolutionary processes and the complex network of hormonal and genetic control of ripening. The book explains the physiochemical and molecular changes in fruit that impact its quality, and recent developments in understanding of the genetic, molecular and biochemical basis for colour, flavour and texture. It is a valuable resource for plant and crop researchers and professionals, agricultural engineers, horticulturists, and food scientists.Summary:Reviews the physiochemical and molecular changes in fruit which impact flavour, texture, and colourCovers recent advances in genomics on the genetic, molecular, and biochemical basis of fruit qualityIntegrates information on both hormonal and genetic control of ripeningRelevant for basic researchers and applied scientists