Browse Results

Showing 50,026 through 50,050 of 77,178 results

Non-Wood Forest Products of Asia: Knowledge, Conservation and Livelihood (World Forests #25)

by A. Z. M. Manzoor Rashid Niaz Ahmed Khan Mahmood Hossain

This book highlights the importance of non-wood forest products (NWFPs) and their crucial role in sustaining the livelihood of rural and indigenous communities in Asia. The authors depict how the preservation of forests and the associated major non-wood resources may provide an important avenue to reduce poverty. The local practices and knowledge on harvesting NWFPs are often rooted in tradition, and vary from one region to the other. This made it difficult to develop and establish research focus on a greater scale in the past. Readers of this volume will gain an often-missed, broader perspective from these new studies. The authors put a special emphasis on the nexus between conservation and livelihood from an Asian point of view. This addresses a knowledge gap in the current literature and offers important clues on conducting similar research around the world. The volume provides a useful reference guide for the relevant researchers, practitioners and policy makers.

Nonautonomous Dynamical Systems in the Life Sciences

by Peter E. Kloeden Christian Pötzsche

Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors (Springer Monographs in Mathematics)

by David N. Cheban

This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).

Noncanonical Amino Acids: Methods and Protocols (Methods in Molecular Biology #1728)

by Edward A. Lemke

This volume covers some of the most widely used protocols on nanocanonical amino acids, providing details and advice for users to get each method up and running for their chosen application. Chapters have been divided into three parts describing methods for protein production in the test tube, in prokaryotes, and in eukaryotes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Noncanonical Amino Acids: Methods and Protocols aims to provide readers with techniques that enable them to design new experiments and create new areas of research.

Nonclassical Ion Channels in the Nervous System (Methods in Signal Transduction Series)

by Tian-Le Xu

Ion channels generate bioelectricity. Recent findings have documented the biophysical properties, the structure, assembly and regulation, and function and dysfunction of nonclassical nervous system ion channels. This book reviews nonclassical ion channel research, ranging from the basic biology, structure, regulations to their functions not only in normal physiology but also neurological disorders, using a variety of cutting-edge techniques and novel animal models.

Nonclinical Statistics for Pharmaceutical and Biotechnology Industries

by Lanju Zhang

This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The chapters provide as appropriate, a scientific background to the topic, relevant regulatory guidance, current statistical practice, and further research directions.

Noncoding RNAs and Bone

by Airong Qian Ye Tian

The book provides an in-depth and comprehensive overview of the essential role of non-coding RNAs (ncRNAs) in bone formation. In combination with researches from multiple scholars in this field, the book reviews the mechanisms of ncRNA-related bone diseases, as well as the potential applications of RNA synthesis technology in bone disorder treatments. This volume covers the following topics: 1) basic introduction of non-coding RNA and bone development, how 2) microRNAs and 3) long noncoding RNAs (LncRNAs) regulate bone formation, 4) how ncRNAs and the corresponding pathways participate in bone metabolism diseases, 5) RNA synthesis technology and the possible RNA therapies in bone disease. Researchers and students in the fields of human genetics, human physiology, developmental biology and biomedical engineering, as well as professionals and scientists in Orthopedics, will particularly find this book helpful.

Noncontact Atomic Force Microscopy

by Seizo Morita Franz J. Giessibl Ernst Meyer Roland Wiesendanger

This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.

Noncovalent Forces

by Steve Scheiner

Computational methods, and in particular quantum chemistry, have taken the lead in our growing understanding of noncovalent forces, as well as in their categorization. This volume describes the current state of the art in terms of what we now know, and the current questions requiring answers in the future. Topics range from very strong (ionic) to very weak (CH--π) interactions. In the intermediate regime, forces to be considered are H-bonds, particularly CH--O and OH--metal, halogen, chalcogen, pnicogen and tetrel bonds, aromatic stacking, dihydrogen bonds, and those involving radicals. Applications include drug development and predictions of crystal structure.

Noncovalent Functionalization of Carbon Nanotubes

by Claudia Backes

In this thesis, Claudia Backes guides the reader through her multidisciplinary research into the non-covalent functionalization of carbon nanotubes in water. Although one of the most remarkable materials of the 21st century, carbon nanotubes often have limited application because of their intrinsically low solubility and polydispersity. The author shows that rational surfactant design is a powerful tool for chemists because it can unmask the key to solubilization and allow us to tailor nanotube surface and optical properties in a fully reversible fashion. Aspects of organic, physical and analytical chemistry, as well as colloidal sciences are covered in this outstanding work which brings us one step closer to exploiting this super-material to its full potential.

Nondestructive Biomarkers in Vertebrates

by Cristina Fossi Claudio Leonzio

Nondestructive Biomarkers in Vertebrates presents an innovative approach for hazard assessment in vertebrates based on nondestructive rather than destructive methods. The book reviews the state of the art and defines the development and validation procedure of this new strategy. Biological materials, such as blood samples, epithelial tissue, eggs, feathers, and feces that can be obtained without stress or damage to the animal are suggested. Certain traditional studies (blood esterases, blood chemistry, mixed function oxidases, porphyrins, DNA damage, and cytological changes) can be performed on these specimens, along with new tests requiring only very small samples. This approach is developed to benefit protected, threatened species whose existence cannot be further jeopardized by the use of destructive methods. This volume will be particularly useful to ecotoxicologists, wildlife protection personnel, environmental consultants, and conservationist organizations.

Nondestructive Evaluation of Food Quality

by Shyam N. Jha

Numerous works on non-destructive testing of food quality have been reported in the literature. Techniques such as Near InfraRed (NIR) spectroscopy, color and visual spectroscopy, electronic nose and tongue, computer vision (image analysis), ultrasound, x-ray, CT and magnetic resonance imaging are some of the most applied for that purpose and are described in this book. Aspects such as theory/basics of the techniques, practical applications (sampling, experimentation, data analysis) for evaluation of quality attributes of food and some recent works reported in literature are presented and discussed. This book is particularly interesting for new researchers in food quality and serves as an updated state-of-the-art report for those already familiar with the field.

Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables

by Pankaj B. Pathare Mohammad Shafiur Rahman

This book describes the various techniques for nondestructive quality assessment of fruits and vegetables. It covers the methods, measurements, operation principles, procedures, data analysis, and applications for implementing these techniques.The book presents the details of nondestructive approaches focusing on the present-day trends and existing future opportunities in the fresh food supply chain. First, it overviews different nondestructive techniques in food quality detection. Then it presents nondestructive methods: monochrome computer vision, imaging techniques, biospeckle laser technique, Fourier Transform Infrared (FTIR) Spectroscopy, hyperspectral imaging, Raman spectroscopy, near infrared (NIR) spectroscopy, X-ray computed tomography, ultrasound, acoustic emission, chemometrics, electronic nose and tongue. Selected applications of each method are also introduced. As a result, readers gain a better understanding of how to use nondestructive methods and technologies to detect the quality of fresh fruits and vegetables.With a wide range of interesting topics, the book will benefit readers including postharvest & food scientists/technologists, industry personnel and researchers involved in fresh produce quality detection. The book can also serve as a readily accessible reference material for postgraduate students.

Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures

by Shuncong Zhong Walter Nsengiyumva

This book presents a detailed description of the most common nondestructive testing(NDT) techniques used for the testing and evaluation fiber-reinforced composite structures, during manufacturing and/or in service stages. In order to facilitate the understanding and the utility of the different NDT techniques presented, the book first provides some information regarding the defects and material degradation mechanisms observed in fiber-reinforced composite structures as well as their general description and most probable causes. It is written based on the extensive scientific research and engineering backgrounds of the authors in the NDT and structural health monitoring (SHM) of structural systems from various areas including electrical, mechanical, materials, civil and biomedical engineering. Pursuing a rigorous approach, the book establishes a fundamental framework for the NDT of fiber-reinforced composite structures, while emphasizing on the importance of technique’s spatial resolution, integrated systems analysis and the significance of the influence stemming from the applicability of the NDT and the physical parameters of the test structures in the selection and utilization of adequate NDT techniques.The book is intended for students who are interested in the NDT of fiber-reinforced composite structures, researchers investigating the applicability of different NDT techniques to the inspections of structural systems, and NDT researchers and engineers working on the optimization of NDT systems for specific applications involving the use of fiber-reinforced composite structures.

Nondestructive Testing of Materials and Structures

by Mehmet Ali Taşdemir Oral Büyüköztürk Oğuz Güneş Yılmaz Akkaya

Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectrum are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state of the art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future research directions to overcome the challenges in their development and practical use. In this respect, the contents of this book will equally benefit practicing engineers and researchers who take part in characterization, assessment and health monitoring of materials and structures.

Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications

by XinPei Lu Stephan Reuter Mounir Laroussi DaWei Liu

Nonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.

Nonequilibrium Dynamics of Collective Excitations in Quantum Materials (Springer Theses)

by Edoardo Baldini

This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons…) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.

Nonequilibrium Green's Functions Approach to Inhomogeneous Systems

by Karsten Balzer Michael Bonitz

This book offers a self-contained introduction to non-equilibrium quantum particle dynamics for inhomogeneous systems, including a survey of recent breakthroughs pioneered by the authors and others. The approach is based on real-time Green's functions.

Nonequilibrium Many-Body Theory of Quantum Systems

by Gianluca Stefanucci Robert Van Leeuwen

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Nonequilibrium Molecular Dynamics

by Billy D. Todd Peter J. Daivis

Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and how to compute it from basic microscopic principles, and generalized hydrodynamics.

Nonequilibrium Phase Transitions in Driven Vortex Matter: The Reversible-Irreversible Transition, Dynamical Ordering, and Kibble-Zurek Mechanism (Springer Theses)

by Shun Maegochi

This book presents experimental studies of nonequilibrium phase transitions induced by ac and dc forces in collectively interacting systems—a superconducting vortex system with random pinning. It first shows that a phase transition from reversible to irreversible flow occurs by increasing vortex density as well as amplitude of ac shear, which is indicative of the universality of the reversible-irreversible transition. Two distinct flow regimes are also found in the reversible phase. Next, the book presents new methods for dc driven experiments—transverse mode-locking and transverse current-voltage measurements—and provides convincing evidence of the second-order dynamical transition from disordered plastic to anisotropically ordered smectic flow. Lastly it reports on the first experimental demonstration of the Kibble-Zurek mechanism for the nonequilibrium phase transition.The experimental results indicate that both the reversible-irreversible transition and the dynamical ordering transition belong to the directed percolation universality class which is one of the fundamental classes of nonequilibrium phase transitions. Hence, the findings will be generalized to other nonequilibrium systems and stimulate research on nonequilibrium physics.

Nonequilibrium Processes in Catalysis

by Oleg V. Krylov

Nonequilibrium Processes in Catalysis presents modern ideas and experimental data (e.g., molecular beams, laser technique) on adsorption and catalysis, the mechanism of energy exchange in the processes of particles interaction with a surface, and the lifetimes of excited particles on a surface. Previously unpublished theoretical information regarding the principle of chemoenergetical stimulation accounting for the acceleration of one reaction at the expense of reactant excitation in another is provided, and new ideas about nonequilibrium surface diffusion are explored. Examples of the formation of nonequilibrium dissipative structures in catalysis are presented, including auto-oscillations, auto-waves, multiplicity of kinetic regimes, nonequilibrium phase transition, and decelerated electron exchange between solid and adsorbed species. The book also describes new experimental methods for studying nonequilibrium and quick processes in catalysis. Nonequilibrium Processes in Catalysis will benefit physicists involved with surface science, chemists involved with adsorption and catalysis, engineers, vacuum scientists, physical chemists, materials chemists, students, and others interested in these processes.

Nonequilibrium Statistical Mechanics: An Introduction with Applications

by Biman Bagchi

Nonequilibrium statistical mechanics (NESM), practically synonymous with time-dependent statistical mechanics (TDSM), is a beautiful and profound subject, vast in scope, diverse in applications, and indispensable in understanding the changing natural phenomena we encounter in the physical, chemical and biological world. Although time dependent phenomena have been studied from antiquity, the modern subject, the nonequilibrium statistical mechanics, has its genesis in Boltzmann’s 1872 classic paper that aimed at extending Maxwell’s kinetic theory of gases by including intermolecular interactions. Subsequent development of the subject drew upon the seminal work of Einstein and Langevin on Brownian motion, Rayleigh and Stokes on hydrodynamics, and on the works of Onsager, Prigogine, Kramers, Kubo, Mori, and Zwanzig. One major goal of this book is to develop and present NESM in an organized fashion so that students can appreciate and understand the flow of the subject from postulates to practical uses. This book takes the students on a journey from fundamentals to applications, mostly using simple mathematics, and fundamental concepts. With the advent of computers and computational packages and techniques, a deep intuitive understanding can allow the students to tackle fairly complex problems, like proteins in lipid membranes or solvation of ions in electrolytes used in batteries. The subject is still evolving rapidly, with forays into complex biological events, and materials science. Nonequilibrium Statistical Mechanics: An Introduction with Applications is, thus, an introductory text that aims to provide students with a background and skill essential to study and understand time-dependent (relaxation) phenomena. It will allow students to calculate transport properties like diffusion and conductivity. The book also teaches the methods to calculate reaction rate on a multi-dimensional energy surface, in another such application. For a beginner in the field, especially for one with an aim to study chemistry and biology, and also physics, one major difficulty faced is a lack of organization of the available study material. Since NESM is a vast subject with many different theoretical tools, the above poses a problem. This book lays the foundations towards understanding time- dependent phenomena in a simple and systematic fashion. It is accessible to students and researchers who have basic training in physics and mathematics. The book can be used to teach advanced undergraduates. Some involved topics, like the projection operator technique and mode coupling theory, are more suitable for Ph.D. level.

Nonequilibrium Statistical Mechanics of Heterogeneous Fluid Systems

by Andrei G. Bashkirov

There is a wide variety of heterogeneous fluid systems that possess interphase surfaces. This monograph is devoted to pioneering studies in nonequilibrium statistical mechanics of such systems. Starting from the Liouville equation, the equations of surface hydrodynamics are derived with allowance for discontinuities of thermodynamic parameters of interphase boundaries. Brownian motion of a large solid particle in a fluid and nucleation are treated as results of fluctuations of flows across particle surfaces. With the use of the Gibbs method, a shock wave in a gas is considered as a sort of an interphase surface, and the surface tension of a shock front is introduced for the first time.

Nonequilibrium Statistical Physics: A Modern Perspective

by Roberto Livi Paolo Politi

Statistical mechanics has been proven to be successful at describing physical systems at thermodynamic equilibrium. Since most natural phenomena occur in nonequilibrium conditions, the present challenge is to find suitable physical approaches for such conditions: this book provides a pedagogical pathway that explores various perspectives. The use of clear language, and explanatory figures and diagrams to describe models, simulations and experimental findings makes the book a valuable resource for undergraduate and graduate students, and also for lecturers organizing teaching at varying levels of experience in the field. Written in three parts, it covers basic and traditional concepts of nonequilibrium physics, modern aspects concerning nonequilibrium phase transitions, and application-orientated topics from a modern perspective. A broad range of topics is covered, including Langevin equations, Levy processes, directed percolation, kinetic roughening and pattern formation.

Refine Search

Showing 50,026 through 50,050 of 77,178 results