- Table View
- List View
Nonlinear Optical Borate Crystals: Principals and Applications
by Masashi Yoshimura Zheshuai Lin Yusuke Mori Rukang Li Gerard Aka Chuangtian Chen Jiyang Wang Yushi Kaneda Takatamo Sasaki Yincheng Wu Zhangui HuThis clear and self-contained review of the last four decades of research highlights in the hot field of nonlinear optical (NLO) crystals, particularly of borate-based ultraviolet and deep-ultraviolet NLO crystals, covers three major subjects: the structure-property relationship in borate crystals, the structural and optical characteristics of various promising borate crystals, and their fruitful applications in a wide range of scientific and technological fields. Edited by the discoverers and users of these optical borate crystals, this is a readily accessible reading for semiconductor, applied and solid state physicists, materials scientists, solid state chemists, manufacturers of optoelectronic devices, and those working in the optical industry.
Nonlinear Optical Cavity Dynamics
by Philippe GreluBy recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.
Nonlinear Optical Properties of Materials
by Rashid A. GaneevThis book is mostly concerned on the experimental research of the nonlinear optical characteristics of various media, low- and high-order harmonic generation in different materials, and formation, and nonlinear optical characterization of clusters. We also demonstrate the inter-connection between these areas of nonlinear optics. Nonlinear optical properties of media such as optical limiting can be applied in various areas of science and technology. To define suitable materials for these applications, one has to carefully analyse the nonlinear optical characteristics of various media, such as the nonlinear refractive indices, coefficients of nonlinear absorption, saturation absorption intensities, etc. Knowing the nonlinear optical parameters of materials is also important for describing the propagation effects, self-interaction of intense laser pulses, and optimisation of various nonlinear optical processes. Among those processes one can admit the importance of the studies of the frequency conversion of coherent laser sources. The area of interest for nonlinear optical characterization of materials is also closely related with new field of nanostructures formation and application during laser-matter interaction. We show how the nonlinear optical analysis of materials leads to improvement of their high-order nonlinear optical response during the interaction with strong laser fields. Ablation-induced nanoparticles formation is correlated with their applications as efficient sources of coherent short-wavelength photons. From other side, recent achievements of harmonic generation in plasmas are closely related with the knowledge of the properties of materials in the laser plumes. All of these studies are concerned with the low-order nonlinear optical features of various materials. The novelty of the approach developed in present book is related with inter-connection of those studies with each other.
Nonlinear Optical Systems
by Luigi Lugiato Franco Prati Massimo BrambillaGuiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing (Optics And Photonics Ser.)
by Le Nguyen Binh Dang Van LietNonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book's coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring an
Nonlinear Optics
by Alan NewellNonlinear optics, the study of the nonlinear effects associated with the propagation of light through matter, is so scientifically rich and technologically promising that it is destined to become one of the most important areas of scientific research into the next century. This book is written for graduate students or anyone interested in getting a unified picture of this emerging field.Nonlinear Optics allows the reader to see all these manifestations of the light-matter interaction as part of the unified whole. Professors Newell and Moloney show how to use these simple equations both to gain a better understanding of the physical processes involved and to deal with the practical applications. Specific topics include: the notion of the nonlinear refractive index and self-phase modulation, the propagation and use of nonlinear waves and solitons in optical fibers and waveguides, two-and-three lasers, optical bistability, the interaction of co- and counter-propagating beams, stimulated Raman and Brillouin scattering, and self-induced transparency. The final chapter discusses mathematical and computational methods such as multiple time scaling, linear and nonlinear wave propagation, solitons, numerical methods, and useful software packages.
Nonlinear Optics
by Chunfei LiThis book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of "slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of optics, optoelectronics, fiber communication, information technology and materials etc.
Nonlinear Optics and Laser Emission through Random Media
by Viola FolliDisorder is everywhere, inherently present in nature, and is commonly believed to be a synonymous with disturbance. As a consequence, the methodical and customary study of the dynamics of the electromagnetic field, both in the linear and nonlinear optical regimes, leans to rule out it from the treatment. On the other hand, nonlinearity enriches the physical disciplines and brings them closer to reality with respect to the linear approximation. Nonlinearity allows to stimulate a wide and rich ensemble of optical responses that beautifies the role of matter in the active processes with electromagnetic fields. Independently of each other, both of these mechanisms foster localization of light. What happens when light enlightens their synergistic interaction? When pushed together, light, disorder and nonlinearity make new and intriguing phenomena emerge. This text provides a comprehensive investigation of the role of disorder in the nonlinear optical propagation both in transparent media and lasers. Eventually, disorder promotes and enhances complex nonlinear dynamics opening new perspectives in applied research driven by the processes of localization of the electromagnetic field. The first experimental study of laser emission in granular media unveils how randomness magnifies and largely affect laser-matter interactions. Viola Folli in her research work touches and deepens the leading milestones of the new science named Complex Photonics.
Nonlinear Optics in the Filamentation Regime
by Carsten BréeThis thesis provides deep insights into currently controversial questions in laser filamentation, a highly complex phenomenon involving nonlinear optical effects and plasma physics. First, based on the concrete picture of a femtosecond laser beam which self-pinches its radial intensity distribution, the thesis delivers a novel explanation for the remarkable and previously unexplained phenomenon of pulse self-compression in filaments. Moreover, the work addresses the impact of a non-adiabatic change of both nonlinearity and dispersion on such an intense femtosecond pulse transiting from a gaseous dielectric material to a solid one. Finally, and probably most importantly, the author presents a simple and highly practical theoretical approach for quantitatively estimating the influence of higher-order nonlinear optical effects in optics. These results shed new light on recent experimental observations, which are still hotly debated and may completely change our understanding of filamentation, causing a paradigm change concerning the role of higher-order nonlinearities in optics.
Nonlinear Optics: Phenomena, Materials, and Devices
by George I. Stegeman Robert A. StegemanClear, integrated coverage of all aspects of nonlinear optics--phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics--with contributions on applications from Robert Stegeman--this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model--to help readers make the leap from concepts to applications--Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.
Nonlinear Optics: Principles and Applications (Optical Sciences and Applications of Light)
by Karsten Rottwitt Peter Tidemand-LichtenbergThis book describes the fundamental aspects of nonlinear optics from basic principles to applications. Starting from the polarization induced by an electric field in a material, it relates the induced polarization to the propagating fields. It describes the properties of the induced polarization through a material response expressed both in the time and frequency domains leading to the nonlinear wave equation. The second part of the book focuses on applications of nonlinear interaction between light and matter, and considers nonlinearities in crystals and optical fibers.
Nonlinear Oscillations: Exact Solutions and their Approximations
by Ivana KovacicThis book presents exact, closed-form solutions for the response of a variety of nonlinear oscillators (free, damped, forced). The solutions presented are expressed in terms of special functions. To help the reader understand these `non-standard' functions, detailed explanations and rich illustrations of their meanings and contents are provided. In addition, it is shown that these exact solutions in certain cases comprise the well-known approximate solutions for some nonlinear oscillations.
Nonlinear Partial Differential Equations for Scientists and Engineers
by Lokenath DebnathThe revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.
Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale
by Davron Matrasulov H. Eugene StanleyTopics of complex system physics and their interdisciplinary applications to different problems in seismology, biology, economy, sociology, energy and nanotechnology are covered in this new work from renowned experts in their fields. In particular, contributed papers contain original results on network science, earthquake dynamics, econophysics, sociophysics, nanoscience and biological physics. Most of the papers use interdisciplinary approaches based on statistical physics, quantum physics and other topics of complex system physics. Papers on econophysics and sociophysics are focussed on societal aspects of physics such as, opinion dynamics, public debates and financial and economic stability. This work will be of interest to statistical physicists, economists, biologists, seismologists and all scientists working in interdisciplinary topics of complexity.
Nonlinear Photonics and Novel Optical Phenomena
by Zhigang Chen Roberto MorandottiNonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, the theory of polariton solitons in semiconductor microcavities, and Terahertz waves.
Nonlinear Physics of Ecosystems
by Ehud MeronNonlinear Physics of Ecosystems introduces the concepts and tools of pattern formation theory and demonstrates their utility in ecological research using problems from spatial ecology. Written in language understandable to both physicists and ecologists in most parts, the book reveals the mechanisms of pattern formation and pattern dynamics. It als
Nonlinear Polymer Rheology: Macroscopic Phenomenology And Molecular Foundation
by Shi-Qing WangIntegrating latest research results and characterization techniques, this book helps readers understand and apply fundamental principles in nonlinear polymer rheology. The author connects the basic theoretical framework with practical polymer processing, which aids practicing scientists and engineers to go beyond the existing knowledge and explore new applications. Although it is not written as a textbook, the content can be used in an upper undergraduate and first year graduate course on polymer rheology.• Describes the emerging phenomena and associated conceptual understanding in the field of nonlinear polymer rheology• Incorporates details on latest experimental discoveries and provides new methodology for research in polymer rheology• Integrates latest research results and new characterization techniques like particle tracking velocimetric method • Focuses on the issues concerning the conceptual and phenomenological foundations for polymer rheology• Has a companion website for readers to access with videos complementing the content within several chapters
Nonlinear Power Flow Control Design
by Rush D. Robinett III David G. WilsonThis book presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of research and development goals which have important concepts in common: exergy flow, limit cycles, and balance between competing power flows. A unique set of criteria is proposed to design controllers for a class of nonlinear systems. A combination of thermodynamics with Hamiltonian systems provides the theoretical foundation which is then realized in a series of connected case studies. It allows the process of control design to be viewed as a power flow control problem, balancing the power flowing into a system against that being dissipated within it and dependent on the power being stored in it - an interplay between kinetic and potential energies. Human factors and the sustainability of self-organizing systems are dealt with as advanced topics.
Nonlinear Problems in Accelerator Physics, Proceedings of the INT workshop on nonlinear problems in accelerator physics held in Berlin, Germany, 30 March - 2 April, 1992
by Martin BerzNonlinear Problems in Accelerator Physics contains the proceedings of the International Workshop on Nonlinear Problems in Accelerator Physics. Consisting only of invited papers, the book focuses on resolving problems associated with nonlinear effects-essential for the development of the next generation of particle accelerators. It facilitates an understanding of accelerator optical systems. Topics covered include Hamiltonian dynamics (such as CHAOS), computer codes for design of focusing systems, and spectrometers. The book is of interest to researchers in high energy, nuclear, electron, ion and optical beam physics, and applied mathematics.
Nonlinear Resonances
by Shanmuganathan Rajasekar Miguel A.F. SanjuanThis introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques involved in numerical simulations. Though primarily intended for graduate students, it can also be considered a reference book for any researcher interested in the dynamics of resonant phenomena.
Nonlinear Science and Complexity
by Albert C. Luo J.A. Tenreiro Machado Lino B. Figueiredo Manuel F. Silva Ramiro S. BarbosaThis book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include * Chaotic Dynamics and Transport in Classic and Quantum Systems * Complexity and Nonlinearity in Molecular Dynamics and Nano-Science * Complexity and Fractals in Nonlinear Biological Physics and Social Systems * Lie Group Analysis and Applications in Nonlinear Science * Nonlinear Hydrodynamics and Turbulence * Bifurcation and Stability in Nonlinear Dynamic Systems * Nonlinear Oscillations and Control with Applications * Celestial Physics and Deep Space Exploration * Nonlinear Mechanics and Nonlinear Structural Dynamics * Non-smooth Systems and Hybrid Systems * Fractional dynamical systems
Nonlinear Second Order Elliptic Equations
by Mingxin Wang Peter Y. PangThis book focuses on the following three topics in the theory of boundary value problems of nonlinear second order elliptic partial differential equations and systems: (i) eigenvalue problem, (ii) upper and lower solutions method, (iii) topological degree method, and deals with the existence of solutions, more specifically non-constant positive solutions, as well as the uniqueness, stability and asymptotic behavior of such solutions.While not all-encompassing, these topics represent major approaches to the theory of partial differential equations and systems, and should be of significant interest to graduate students and researchers. Two appendices have been included to provide a good gauge of the prerequisites for this book and make it reasonably self-contained.A notable strength of the book is that it contains a large number of substantial examples. Exercises for the reader are also included. Therefore, this book is suitable as a textbook for graduate students who havealready had an introductory course on PDE and some familiarity with functional analysis and nonlinear functional analysis, and as a reference for researchers.
Nonlinear Solid Mechanics For Finite Element Analysis: Statics
by Javier Bonet Antonio J. Gil Richard D. WoodDesigning engineering components that make optimal use of materials requires consideration of the nonlinear static and dynamic characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, which requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both the nonlinear solid mechanics and the associated finite element techniques together, the authors provide, in the first of two books in this series, a complete, clear, and unified treatment of the static aspects of nonlinear solid mechanics. Alongside a range of worked examples and exercises are user instructions, program descriptions, and examples for the FLagSHyP MATLAB computer implementation, for which the source code is available online. While this book is designed to complement postgraduate courses, it is also relevant to those in industry requiring an appreciation of the way their computer simulation programs work.
Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability
by Davide BigoniThis book covers solid mechanics for non-linear elastic and elastoplastic materials, describing the behaviour of ductile material subject to extreme mechanical loading and its eventual failure. The book highlights constitutive features to describe the behaviour of frictional materials such as geological media. On the basis of this theory, including large strain and inelastic behaviours, bifurcation and instability are developed with a special focus on the modelling of the emergence of local instabilities such as shear band formation and flutter of a continuum. The former is regarded as a precursor of fracture, while the latter is typical of granular materials. The treatment is complemented with qualitative experiments, illustrations from everyday life and simple examples taken from structural mechanics.
Nonlinear Stochastic Systems with Incomplete Information
by Huisheng Shu Zidong Wang Bo ShenNonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: * a unified framework for filtering and control problems in complex communication networks with limited bandwidth; * new concepts such as random sensor and signal saturations for more realistic modeling; and * demonstration of the use of techniques such as the Hamilton-Jacobi-Isaacs, difference linear matrix, and parameter-dependent matrix inequalities and sums of squares to handle the computational challenges inherent in these systems. The collection of recent research results presented in Nonlinear Stochastic Processes will be of interest to academic researchers in control and signal processing. Graduate students working with communication networks with lossy information and control of stochastic systems will also benefit from reading the book.