- Table View
- List View
Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation
by Michael Eikerling Andrei KulikovskyThe book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op
Polymer Electrolytes: Characterization Techniques and Energy Applications
by Tan Winie Abdul K. Arof Sabu ThomasA comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.
Polymer Electrolytes and their Composites for Energy Storage/Conversion Devices (Emerging Materials and Technologies)
by Achchhe Lal Sharma Anil Arya Anurag GaurPolymer Electrolytes and their Composites for Energy Storage/Conversion Devices presents a state-of-the-art overview of the research and development in the use of polymers as electrolyte materials for various applications. It covers types of polymer electrolytes, ion dynamics, and the role of dielectric parameters and a review of applications. Divided into two parts, the first part of the book focuses on the types of polymer electrolytes, ion dynamics, and the role of dielectric parameters, while the second part provides a critical review of applications based on polymer electrolytes and their composites. This book: Presents the fundamentals of polymer composites for energy storage/conversion devices Explores the ion dynamics and dielectric properties role in polymer electrolytes Provides detailed preparation methods and important characterization techniques to evaluate the electrolyte potential Reviews analysis of current updates in polymer electrolytes Includes various applications in supercapacitor, battery, fuel cell, and electrochromic windows The book is aimed at researchers and graduate students in physics, materials science, chemistry, materials engineering, energy storage, engineering physics, and industry.
Polymer Electrolytes for Energy Storage Devices
by Prasanth Raghavan and Jabeen Fatima M. J.Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
Polymer-Engineered Nanostructures for Advanced Energy Applications
by Aiqing Zhang Yingkui Yang Zhiqun LinThis book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic-inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.
Polymer Engineering Science and Viscoelasticity
by Hal F. Brinson L. Catherine BrinsonThis book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
Polymer Fiber Optics: Materials, Physics, and Applications (Optical Science and Engineering)
by Mark G. KuzykThis straightforward text examines the scientific principles, characterization techniques, and fabrication methods used to design and produce high quality optical fibers. Polymer Fiber Optics: Materials, Physics, and Applications focuses on the fundamental concepts that will continue to play a role in future research and applications. This book documents the underlying physics of polymer fibers, particularly aspects of light interaction, and details the practical considerations for a broad range of characterization techniques used to investigate new phenomena. The book presents basic fabrication techniques and protocols that will likely remain useful as new advances address specific processing challenges. The author presents a fresh approach to standard derivations, using numerous figures and diagrams to break down complex concepts and illustrate theoretical calculations. The final chapters draw attention to the latest directions in research and novel applications, including photomechanical actuation, electro-optic fibers, and smart materials.
Polymer Films in Sensor Applications
by Gabor HarsanyiPolymer films now play an essential and growing role in sensors. Recent advances in polymer science and film preparation have made polymer films useful, practical and economical in a wide range of sensor designs and applications. Further, the continuing miniaturization of microelectronics favors the use of polymer thin films in sensors. This new book is the first comprehensive presentation of this technology. It covers both scientific fundamentals and practical engineering aspects. Included is an extensive survey of all types of sensors and applications. The very detailed table of contents in the next pages provides full information on content. More than 200 schematics illustrate a wide variety of sensor structures and their function.
Polymer Gels and Networks
by Yoshihito Osada Alexei KhokhlovProvides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equations over non-Archimedean fields in relation to Markov processes.
Polymer Glasses
by Connie B. Roth"the present book will be of great value for both newcomers to the field and mature active researchers by serving as a coherent and timely introduction to some of the modern approaches, ideas, results, emerging understanding, and many open questions in this fascinating field of polymer glasses, supercooled liquids, and thin films" –Kenneth S. Schweizer, Morris Professor of Materials Science & Engineering, University of Illinois at Urbana-Champaign (from the Foreword) This book provides a timely and comprehensive overview of molecular level insights into polymer glasses in confined geometries and under deformation. Polymer glasses have become ubiquitous to our daily life, from the polycarbonate eyeglass lenses on the end of our nose to large acrylic glass panes holding water in aquarium tanks, with advantages over glass in that they are lightweight and easy to manufacture, while remaining transparent and rigid. The contents include an introduction to the field, as well as state of the art investigations. Chapters delve into studies of commonalities across different types of glass formers (polymers, small molecules, colloids, and granular materials), which have enabled microscopic and molecular level frameworks to be developed. The authors show how glass formers are modeled across different systems, thereby leading to treatments for polymer glasses with first-principle based approaches and molecular level detail. Readers across disciplines will benefit from this topical overview summarizing the key areas of polymer glasses, alongside an introduction to the main principles and approaches.
Polymer Interface and Adhesion
by WuPoly mer Interface and Adhesion provides the critical basis for further advancement in thisfield. Combining the principles of interfacial science, rheology, stress analysis, and fracturemechanics, the book teaches a new approach to the analysis of long standing problemssuch as: how is the interface formed; what are its physical and mechanical properties;and how does the interface modify the stress field and fracture strength of the material.The book offers many outstanding features, including extensive listings of pertinent references,exhaustive tabulations of the interfacial properties of polymers, critical reviews ofthe many conflicting theories, and complete discussions of coupling agents, adhesion promotion,and surface modifications. Emphasis is placed on physical concepts and mechanisms,using clear, understandable mathematics.Polymer Interface and Adhesion promotes a more thorough understanding of the physical,mechanical, and adhesive properties of multiphase, polymer systems. Polymer scientistsand engineers, surface chemists, materials scientists, rheologists, as well as chemical andmechanical engineers interested in the research, development or industrial applications ofpolymers, plastics, fibers, coatings, adhesives, and composites need this important newsource book.
Polymer Interfaces and Emulsions
by Kunio Esumi"Presents the latest knowledge on a wide range of topics in polymer science, including the dynamics, preparation, application, and physiochemical properties of polymer solutions and colloids; the adsorption characteristics at polymer surfaces; and the adhesion properties (including acid-base) of polymer surfaces."
Polymer Libraries
by Dean C. Webster Michael A. MeierMeier/Webster: General Aspects of Polymer Libraries. - Schubert: Polyoxazoline Libraries and/or the General. - Fasolka: Gradient Methods for Polymer Libraries, Including their Microfluidic Polymerization Methods. - Becker: Bioactive Libraries. - Adams: The Computer-Aided Design of Polymers.
Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications
by Amos NussinovitchThe use of hydrocolloid (water-soluble polymer) beads is on the rise in many fields. A book that covers both past and new applications for hydrocolloid beads, their properties, and how to deliberately change them, is crucial. Currently there are only chapters in a handful of books covering these topics; there are no books fully devoted to them. Water-Soluble Polymer Beads: Fundamentals and Applications fills this void. This book describes all methods of bead production and techniques to change and to estimate their physical and chemical properties. A full description of past and recent developments and applications of beads in the fields of agriculture, biotechnology, environmental studies, medicine and food are presented.
Polymer Materials: Macroscopic Properties and Molecular Interpretations
by Jean Louis Halary Francoise Laupretre Lucien MonnerieAdvanced reviews for Polymer Materials "Molecular modeling of polymers ... is a subject that cannot be found in any other [book] in any appreciable detail. ... [T]he detailed chapters on specific polymer systems is a great idea." — Gregory Odegard, Michigan Technological University "The polymer community needs a text book which can connect the macroscopic mechanics with mesoscopic and molecular aspects of polymer." — Liangbin Li, University of Science and Technology of China This book takes a unique, multi-scale approach to the mechanical properties of polymers, covering both the macroscopic and molecular levels unlike any other book on the market. Based on the authors’ extensive research and writing in the field, Polymer Materials emphasizes the relationships between the chemical structure and the mechanical behavior of polymer materials, providing authoritative guidelines for assessing polymer performance under different conditions and the design of new materials. Key features of this book include: Experimental results on selected examples precede and reinforce the development of theoretical features In-depth discussions of a limited number of polymer systems instead of a brief overview of many Self-contained chapters with a summary of their key points Comprehensive problems and a solutions manual for the different parts of the book Coverage of the basics with an emphasis on polymer dynamics An indispensable resource for polymer scientists and students alike, Polymer Materials is also highly useful for material scientists, engineers, chemists, and physicists in industry and academia.
Polymer Materials
by Kwang-Sup Lee Shiro Kobayashi-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic-Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C-C Main Chain from One Carbon Unit By E. Ihara
Polymer Mechanochemistry
by Roman BoulatovThe series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Polymer-Mediated Phase Stability of Colloids (Springer Theses)
by Álvaro González GarcíaColloid–polymer mixtures are subject of intensive research due to their wide range of applicability, for instance in coatings and food-stuffs. This thesis constitutes a fundamental investigation towards a better control over the stability of such suspensions. Through the chapters, different key parameters governing the stability of colloid–polymer mixtures are explored. How the colloid (pigment) shape and the effective polymer-colloid affinity modulate the stability of the suspension are examples of these key parameters. Despise the mostly theoretical results presented, the thesis is written in a format accessible to a broad scientific audience. Some of the equations of state presented might of direct use to experimentalists. Furthermore, new theoretical insights about colloid–polymer mixtures are put forward. These include four-phase coexistences in effective two-component, quantification of depletant partitioning at high colloidal concentrations, multiple re-entrant phase behaviour of the colloidal fluid–solid coexistence, and a condition where polymers are neither depleted nor adsorbed from/to the colloidal surface.
Polymer Melt Fracture
by Rudy Koopmans Jaap Den Doelder Jaap MolenaarThe continually growing plastics market consists of more than 250 million tons of product annually, making the recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a pictorial library of the different forms of melt fracture and real industrial extrusion melt fracture phenomena, Polymer Melt Fract
Polymer Membranes/Biomembranes
by Wolfgang Knoll Wolfgang Peter Meier*Highest Impact Factor of all publications ranked by ISI within Polymer Science *Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts *Still valid and useful after 5 or 10 years *The electronic version is available free of charge for standing order customers at: springer. com/series/12/ Written for Research
Polymer Membranes for Fuel Cells
by Takeshi Matsuura Javaid ZaidiThis book offers one of the most comprehensive reviews written by a large number of experts in the field of development of polymeric membranes for polymer electrolyte membrane fuel cell (PEMFC). Readers of the book will feel tremendous enthusiasm that is caused when social necessity for alternative energy sources is combined with intellectual curiosity of researchers. The topics hence cover a very wide range, from the membranes developed in a large scale by industries to those developed in the academic laboratories. This book is unique since it is the first book exclusively dedicated for fuel cell membranes. The book is written for engineers, scientists, professors, graduate students as well as general readers in universities, research institutions and industries who are engaged in R & D.
Polymer Mixing and Extrusion Technology (Plastics Engineering Ser. #16)
by NicholasP. CheremisinoffAddressing the two major unit operations-mixing and extrusion-fundamental toprocessing elastomers and plastic materials, this reference summarizes design equationsthat can be employed effectively in scaling up product performance parameters, andcontains a thorough survey of rheological principles. In addition, the book provides awealth of practical information, relating molecular and compositional properties ofpolymers to processing characteristics and end-use properties so that engineers can selectpolymers suitable for specific equipment as well as products.Polymer Mixing and Extrusion Technology examines viscometric techniquesand demonstrates their importance to product quality assurance ... reviews design-relatedliterature/correlations and calculation procedures for mixing and extrusion ... definesneeds and precision standards for setting up a polymer processing laboratory so thatproduct quality control can be implemented in physical testing and processing research.. . plus more.Illustrated with over 200 diagrams, tables, and photographs that facilitate readers'understanding of the processes, Polymer Mixing and Extrusion Technology isan authoritative source for plastics, polymer, and chemical engineers, manufacturers ofplastics processing equipment, and advanced undergraduate and graduate students in thesedisciplines.
Polymer Modification: Principles, Techniques, and Applications (Plastics Engineering)
by John Meister"Describes new modification methods and applications for natural, synthetic, thermoplastic, and thermoset polymers that result from economic forces, commercial processes, and the latest research and development. Features chemical and physical technologies such as sulfonation, alkylation, acid/base hydrolysis, hydrogenation, stress orienting, anneal
Polymer Morphology: Principles, Characterization, and Processing
by Qipeng GuoWith a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. * Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology* Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography* Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites* Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Polymer Nanocomposites based on Inorganic and Organic Nanomaterials
by Susheel Kalia Smita Mohanty B. S. Kaith Sanjay K. NayakThis book covers all aspects of the different classes of nanomaterials - from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.