Browse Results

Showing 61,101 through 61,125 of 79,860 results

Quantum Dots

by Marcel Bruchez Charles Z. Hotz

Quantum Dots captures many diverse applications enabling utility in biological detection. Organized into five parts, the first two parts cover the use of QDs in imaging fixed and living cells (and tissues). Protocols are included for using QDs in routine as well as enabling applications. Part 3 shows early efforts aimed at using QDs in live animals. The final two parts demonstrate the versatility of QD technology in existing assay technology.

Quantum Dots: Applications in Biology (Methods in Molecular Biology #2135)

by Adriana Fontes Beate S. Santos

This third edition provides revised and expanded protocols of consolidated approaches as well as new trends in the field. Chapters guide readers through new approaches to optimize Quantum Dots’ (QD) properties, to evaluate their quantum yields, important features about preparative processes and characterizations of QDs, methods related to QDs for live cell applications, and the versatility of QDs in the bioanalytical and biosensing field. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Quantum Dots: Applications in Biology

by Adriana Fontes Beate Saegesser Santos

In Quantum Dots: Applications in Biology, Second Edition, expert researchers in the field detail consolidated approaches as well as new trends in the field. Organized into five parts, the first part comprises an introduction on Quantum Dots (QDs) as fluorescent probes in Life Sciences. While the second section covers important features about QDs´ preparative processes and characterizations for their successful application as fluorophores. The third part presents main aspects related to QDs methods applied to live cells and tissues. The fourth section focuses on QDs experiments in small animals and the fifth part demonstrates the versatility of QDs in a set of FRET applications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Thorough and intuitive, In Quantum Dots: Applications in Biology, Second Edition aids scientists in continuing to study QDs by providing information about methods and protocols helping to expand their research.

Quantum Dots Based Nanocomposites: Design, Fabrication and Emerging Applications (Engineering Materials)

by Sabu Thomas Poushali Das Sayan Ganguly

This book covers the recent advancements in quantum research and nanotechnology. The chapters investigate the synthesis, design, and applications of quantum dots in nanocomposites, presenting a comprehensive exploration of their principles, manufacturing processes, and diverse applications in electronics, photonics, energy, medicine, and beyond. With a focus on both theoretical foundations and practical insights derived from recent research, the book delves into the distinctive quantum mechanical characteristics of quantum dots, diverse fabrication methods, and the various possibilities emerging from their combination with various matrices. This book offers a captivating blend of theoretical knowledge and practical observations.

Quantum Dots for DNA Biosensing

by Jun-Jie Zhu Jing-Jing Li Hai-Ping Huang Fang-Fang Cheng

This book provides a broad introduction to all major aspects of quantum dot properties including fluorescence, electrochemical, photochemical and electroluminescence. Such properties have been produced for applications in biosensing, cell tracking, in vivo animal imaging and so on. It focuses on their special applications in DNA biosensing and provides readers with detailed information on the preparation and functionalization of quantum dots and the fabrication of DNA biosensors, using examples to show how these properties can be used in DNA biosensor design and the advantages of quantum dots in DNA biosensing. Further new emerging quantum dots such as metal nanoclusters and graphene dots and their applications in DNA biosensing have also been included.

Quantum Dots for Plant Systems (Nanotechnology in the Life Sciences)

by Abdul Majid Humaira Arshad Muhammad Azmat Khan

Quantum dots (QDs) are important in the research and industrial fields due to their diverse properties and technological importance. Recently, QDs have been found to be suitable for biological, biomedical, agricultural, and food science applications. Many research articles, review papers, and internet sources have published on the use of QDs to improve plant growth and yield, but a comprehensive overview in book form has not been available to date. This book provides detailed information on synthesis, functionalization, and the use of various types of quantum dots for plant systems. It also addresses the current state of knowledge on sensing mechanisms of QD-based biosensors used for microorganisms, including bacteria, fungi, and plant virus detection. This book also offers in-depth knowledge related to QDs used for plant growth, nutrients, and plant protection from micro-organisms. This volume is beneficial as one comprehensive resource for students, researchers, scientists, technicians, academicians, and industrialists.

Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment

by Martin J. A. Schütz

This thesis offers a comprehensive introduction to surface acoustic waves in the quantum regime. It addresses two of the most significant technological challenges in developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. Electron spins confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. To this end, the author pursues novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability.

Quantum Dots for Quantum Information Technologies

by Peter Michler

This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

Quantum Dynamics and Laser Control for Photochemistry

by Matthieu Sala

The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and their control by laser pulses. This work encompasses different cutting-edge methods in quantum chemistry, quantum dynamics and for the rigorous description of the interaction of light and matter at the molecular level. It provides a general quantum mechanical framework for the description of chemical processes guided by laser pulses, in particular near conical intersections, i. e. geometries where the nuclear and electronic motions couple and the molecule undergoes non-adiabatic (or non-Born-Oppenheimer) dynamics. In close collaboration with experimentalists, the author succeeds in making a decisive step to link and to apply quantum physics to chemistry by transferring state of the art techniques and concepts developed in physics to chemistry, such as "light dressed atoms and molecules" and "adiabatic Floquet theory". He applies these techniques in three prototypic model systems (aniline, pyrazine and NHD2) using high-level electronic structure calculations. Readers will enjoy the comprehensive and accessible introduction to the topic and methodology, as well as the clear structure of the thesis.

Quantum Dynamics for Classical Systems: With Applications of the Number Operator

by Fabio Bagarello

Introduces number operators with a focus on the relationship between quantum mechanics and social science Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a unique quantum perspective on these classes of models Illustrations of the use of creation and annihilation operators for classical problems Examples of the recent increase in research and literature on the many applications of quantum tools in applied mathematics Clarification on numerous misunderstandings and misnomers while shedding light on new approaches in the field Quantum Dynamics for Classical Systems is an ideal reference for researchers, professionals, and academics in applied mathematics, economics, physics, biology, and sociology. The book is also excellent for courses in dynamical systems, quantum mechanics, and mathematical models.

Quantum Dynamics of a Particle in a Tracking Chamber

by Rodolfo Figari Alessandro Teta

In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

Quantum Dynamics of Simple Systems: Proceedings of the Forty Fourth Scottish Universities Summer School in Physics, Stirling, August 1994 (Scottish Graduate Ser.)

by G-L Oppo; S M Barnett; E Riis; M Wilkinson

The present level of experimental sophistication in quantum physics allows physicists to explore domains unimaginable just a decade ago and to test the most fundamental laws of quantum mechanics. This has led to renewed interest in devising new tests, experiments, and devices where it is possible to observe the interaction and localization of just a few atoms or photons. These techniques have been used to reveal new nonclassical effects, to question the limit of the principle of correspondence, and to force quantum behavior in semiconductors.With contributions from leading experts in quantum systems, Quantum Dynamics of Simple Systems provides an overview of the present range of quantum dynamics, exploring their use and exotic behaviors. It covers specific subjects of quantum dynamics in a competent and detailed way with emphasis on simple systems where few atoms or electrons are involved. This volume will prove to be a useful tool for graduate students as well as experienced physicists.

Quantum Effects in Biology

by M. Mohseni

Quantum mechanics provides the most accurate microscopic description of the world around us, yet the interface between quantum mechanics and biology is only now being explored. This book uses a combination of experiment and theory to examine areas of biology believed to be strongly influenced by manifestly quantum phenomena. Covering subjects ranging from coherent energy transfer in photosynthetic light harvesting to spin coherence in the avian compass and the problem of molecular recognition in olfaction, the book is ideal for advanced undergraduate and graduate students in physics, biology and chemistry seeking to understand the applications of quantum mechanics to biology.

Quantum Effects in Tribology

by Dmitry Nikolaevich Lyubimov Kirill Nikolaevich Dolgopolov

Quantum Effects in Tribology is devoted to the study of quantum foundations of materials friction interaction and evolutionary formation of tribosystem’s operating parameters. At the start of the book, large consideration is given to the analysis of the existing diversity of friction, wear, and lubrication models and their relationship with each other, as well as to the quantum nature of the measurement process and the wave function reduction caused by the act of measurement. Consideration of measurement as a process of defining the output parameters of tribosystem is carried out with the apparatus of second quantization and conceptions associated with non-local quantum effects. Such an approach makes it possible not only to take another look to the evolution of tribosystems but discover previously unknown regularities of friction. The book is intended for professionals working in the field of tribology, but will be also useful for graduate students specializing in the theory of friction and quantum physics.

Quantum Electrodynamics

by Richard P. Feynman

This classic work presents the main results and calculational procedures of quantum electrodynamics in a simple and straightforward way. Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.

Quantum Electrodynamics (Advanced Book Program Ser.)

by Richard P. Feynman

This classic work presents the main results and calculational procedures of quantum electrodynamics in a simple and straightforward way. Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.

Quantum-Enhanced Nonlinear Spectroscopy

by Frank Schlawin

This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber s photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simulations. "

Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector

by Sheon S. Y. Chua

The work in this thesis was a part of the experiment of squeezed light injection into the LIGO interferometer. The work first discusses the detailed design of the squeezed light source which would be used for the experiment. The specific design is the doubly-resonant, traveling-wave bow-tie cavity squeezed light source with a new modified coherent sideband locking technique. The thesis describes the properties affecting the squeezing magnitudes and offers solutions which improve the gain. The first part also includes the detailed modeling of the back-scattering noise of a traveling Optical Parametric Oscillator (OPO). In the second part, the thesis discusses the LIGO Squeezed Light Injection Experiment, undertaken to test squeezed light injection into a 4km interferometric gravitational wave detector. The results show the first ever measurement of squeezing enhancement in a full-scale suspended gravitational wave interferometer with Fabry-Perot arms. Further, it showed that the presence of a squeezed-light source added no additional noise in the low frequency band. The result was the best sensitivity achieved by any gravitational wave detector. The thesis is very well organized with the adequate theoretical background including basics of Quantum Optics, Quantum noise pertaining to gravitational wave detectors in various configurations, along with extensive referencing necessary for the experimental set-up. For any non-experimental scientist, this introduction is a very useful and enjoyable reading. The author is the winner of the 2013 GWIC Theses Prize.

The Quantum Enigma: Finding the Hidden Key

by Wolfgang Smith

Following the overthrow of the classical world picture by the findings of quantum mechanics, physicists have proposed a broad gamut of alternative world views. This book begins with the major recognition that each of these suffers from a certain 'residual Cartesianism' that has been smuggled in unconsciously. It turns out that the moment one discards this hidden and problematic premise, quantum theory begins to 'make sense' in a way that it never has before. As the author shows, it is now possible, for the first time, to integrate the findings of quantum physics into a world view that is neither forced nor ad hoc, but conforms to the permanent intuitions of mankind. Surprisingly, this treatise can be read not only by scientists, but also by readers unacquainted with the technical conceptions of physics or the quantum-reality literature.

Quantum Entanglement (The MIT Press Essential Knowledge series)

by Jed Brody

An exploration of quantum entanglement and the ways in which it contradicts our everyday assumptions about the ultimate nature of reality.Quantum physics is notable for its brazen defiance of common sense. (Think of Schrödinger's Cat, famously both dead and alive.) An especially rigorous form of quantum contradiction occurs in experiments with entangled particles. Our common assumption is that objects have properties whether or not anyone is observing them, and the measurement of one can't affect the other. Quantum entanglement—called by Einstein “spooky action at a distance”—rejects this assumption, offering impeccable reasoning and irrefutable evidence of the opposite. Is quantum entanglement mystical, or just mystifying? In this volume in the MIT Press Essential Knowledge series, Jed Brody equips readers to decide for themselves. He explains how our commonsense assumptions impose constraints—from which entangled particles break free.Brody explores such concepts as local realism, Bell's inequality, polarization, time dilation, and special relativity. He introduces readers to imaginary physicists Alice and Bob and their photon analyses; points out that it's easier to reject falsehood than establish the truth; and reports that some physicists explain entanglement by arguing that we live in a cross-section of a higher-dimensional reality. He examines a variety of viewpoints held by physicists, including quantum decoherence, Niels Bohr's Copenhagen interpretation, genuine fortuitousness, and QBism. This relatively recent interpretation, an abbreviation of “quantum Bayesianism,” holds that there's no such thing as an absolutely accurate, objective probability “out there,” that quantum mechanical probabilities are subjective judgments, and there's no “action at a distance,” spooky or otherwise.

Quantum Entanglement in Electron Optics: Generation, Characterization, and Applications (Springer Series on Atomic, Optical, and Plasma Physics #67)

by Naresh Chandra Rama Ghosh

This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

Quantum Entanglement in Electron Optics

by Rama Ghosh Naresh Chandra

This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

Quantum Entanglement of Complex Structures of Photons

by Robert Fickler

This thesis casts new light on quantum entanglement of photons with complex spatial patterns due to direct coincidence imaging. It demonstrates novel methods to generate, investigate, and verify entanglement of complex spatial structures. Quantum theory is one of the most successful and astonishing physical theories. It made possible various technical devices like lasers or mobile phones and, at the same time, it completely changed our understanding of the world. Interestingly, such counterintuitive features like entanglement are an important building block for future quantum technologies. In photonic experiments, the transverse spatial degree of freedom offers great potential to explore fascinating phenomena of single photons and quantum entanglement. It was possible to verify the entanglement of two photons with very high quanta of orbital angular momentum, a property of photons connected to their spatial structure and theoretically unbounded. In addition, modern imaging technology was used to visualize the effect of entanglement even in real-time and to show a surprising property: photons with complex spatial patterns can be both entangled and not entangled in polarization depending on their transverse spatial position.

Quantum Error Correction: Symmetric, Asymmetric, Synchronizable, and Convolutional Codes (Quantum Science and Technology)

by Giuliano Gadioli La Guardia

This text presents an algebraic approach to the construction of several important families of quantum codes derived from classical codes by applying the well-known Calderbank-Shor-Steane (CSS), Hermitian, and Steane enlargement constructions to certain classes of classical codes. In addition, the book presents families of asymmetric quantum codes with good parameters and provides a detailed description of the procedures adopted to construct families of asymmetric quantum convolutional codes.Featuring accessible language and clear explanations, the book is suitable for use in advanced undergraduate and graduate courses as well as for self-guided study and reference. It provides an expert introduction to algebraic techniques of code construction and, because all of the constructions are performed algebraically, it enables the reader to construct families of codes, rather than only codes with specific parameters. The text offers an abundance of worked examples, exercises, and open-ended problems to motivate the reader to further investigate this rich area of inquiry. End-of-chapter summaries and a glossary of key terms allow for easy review and reference.

Quantum Error Correction

by Daniel A. Lidar Todd A. Brun

Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

Refine Search

Showing 61,101 through 61,125 of 79,860 results