Browse Results

Showing 61,276 through 61,300 of 79,860 results

Quantum Mechanics, Volume 2: Angular Momentum, Spin, and Approximation Methods (Quantum Mechanics Ser. #Vol. 2)

by Claude Cohen-Tannoudji Franck Laloë Bernard Diu

This new edition of the unrivalled textbook introduces concepts such as the quantum theory of scattering by a potential, special and general cases of adding angular momenta, time-independent and time-dependent perturbation theory, and systems of identical particles. The entire book has been revised to take into account new developments in quantum mechanics curricula. The textbook retains its typical style also in the new edition: it explains the fundamental concepts in chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * The quantum mechanics classic in a new edition: written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the book contains more than 170 worked examples plus exercises Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.

Quantum Mechanics, Volume 3: Fermions, Bosons, Photons, Correlations, and Entanglement

by Claude Cohen-Tannoudji Franck Laloë Bernard Diu

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.

Quantum Mechanics with Applications

by Prof. David B Beard Kevin B Beard Prof. George B Beard

This introductory text emphasizes Feynman's development of path integrals and its application to wave theory for particles. Suitable for undergraduate and graduate students of physics, the well-written, clear, and rigorous text was written by two of the nation's leading authorities on quantum physics. A solid foundation in quantum mechanics and atomic physics is assumed.Early chapters provide background in the mathematical treatment and particular properties of ordinary wave motion that also apply to particle motion. The close relation of quantum theory to physical optics is stressed. Subsequent sections emphasize the physical consequences of a wave theory of material properties, and they offer extensive applications in atomic physics, nuclear physics, solid state physics, and diatomic molecules. Four helpful Appendixes supplement the text.

Quantum Mechanics with Basic Field Theory

by Bipin R. Desai

Students and instructors alike will find this organized and detailed approach to quantum mechanics ideal for a two-semester graduate course on the subject. This textbook covers, step-by-step, important topics in quantum mechanics, from traditional subjects like bound states, perturbation theory and scattering, to more current topics such as coherent states, quantum Hall effect, spontaneous symmetry breaking, superconductivity, and basic quantum electrodynamics with radiative corrections. The large number of diverse topics are covered in concise, highly focused chapters, and are explained in simple but mathematically rigorous ways. Derivations of results and formulae are carried out from beginning to end, without leaving students to complete them. With over 200 exercises to aid understanding of the subject, this textbook provides a thorough grounding for students planning to enter research in physics. Several exercises are solved in the text, and password-protected solutions for remaining exercises are available to instructors at www. cambridge. org/9780521877602.

Quantum Metrology

by Uwe Siegner Ernst O. Goebel

The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the international system of units). The basic physical phenomena are introduced on a level which provides comprehensive information for the experienced reader but also provides a guide for a more intense study of these phenomena for students.

Quantum Metrology, Imaging, and Communication

by David S. Simon Gregg Jaeger Alexander V. Sergienko

This book describes the experimental and theoretical bases for the development of specifically quantum-mechanical approaches to metrology, imaging, and communication. In particular, it presents novel techniques developed over the last two decades and explicates them both theoretically and by reference to experiments which demonstrate their principles in practice. The particular techniques explored include two-photon interferometry, two-photon optical aberration and dispersion cancellation, lithography, microscopy, and cryptography.

Quantum Microscopy of Biological Systems

by Michael Taylor

This thesis reports on the development of the first quantum enhanced microscope and on its applications in biological microscopy. The first quantum particle-tracking microscope, described in detail here, represents a pioneering advance in quantum microscopy, which is shown to be a powerful and relevant technique for future applications in science and medicine. The microscope is used to perform the first quantum-enhanced biological measurements -- a central and long-standing goal in the field of quantum measurement. Sub diffraction-limited quantum imaging is achieved, also for the first time, with a scanning probe imaging configuration allowing 10-nanometer resolution.

Quantum Mind: The Edge Between Physics and Psychology

by Arnold Mindell

By exploring principles found in psychology, math, physics, and shamanism, it becomes possible to link a cosmic perspective with ordinary life.

Quantum Modeling of Complex Molecular Systems

by Jean-Louis Rivail Manuel Ruiz-Lopez Xavier Assfeld

This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.

Quantum Models of Cognition and Decision

by Jerome R. Busemeyer Peter D. Bruza

Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, 'quantum entanglement', allows cognitive phenomena to be modeled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light. Introducing the basic principles in an easy-to-follow way, this book does not assume a physics background or a quantum brain and comes complete with a tutorial and fully worked-out applications in important areas of cognition and decision.

The Quantum Moment: How Planck, Bohr, Einstein, and Heisenberg Taught Us to Love Uncertainty

by Alfred Scharff Goldhaber Robert P. Crease

The fascinating story of how quantum mechanics went mainstream. The discovery of the quantum--the idea, born in the early 1900s in a remote corner of physics, that energy comes in finite packets instead of infinitely divisible quantities--planted a rich set of metaphors in the popular imagination. Quantum imagery and language now bombard us like an endless stream of photons. Phrases such as multiverses, quantum leaps, alternate universes, the uncertainty principle, and Schrödinger's cat get reinvented continually in cartoons and movies, coffee mugs and T-shirts, and fiction and philosophy, reinterpreted by each new generation of artists and writers. Is a "quantum leap" big or small? How uncertain is the uncertainty principle? Is this barrage of quantum vocabulary pretentious and wacky, or a fundamental shift in the way we think? All the above, say Robert P. Crease and Alfred Scharff Goldhaber in this pathbreaking book. The authors--one a philosopher, the other a physicist--draw on their training and six years of co-teaching to dramatize the quantum's rocky path from scientific theory to public understanding. Together, they and their students explored missteps and mistranslations, jokes and gibberish, of public discussion about the quantum. Their book explores the quantum's manifestations in everything from art and sculpture to the prose of John Updike and David Foster Wallace. The authors reveal the quantum's implications for knowledge, metaphor, intellectual exchange, and the contemporary world. Understanding and appreciating quantum language and imagery, and recognizing its misuse, is part of what it means to be an educated person today. The result is a celebration of language at the interface of physics and culture, perfect for anyone drawn to the infinite variety of ideas.

Quantum Monte Carlo Approaches For Correlated Systems

by Federico Becca Sandro Sorella

Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference for students and researchers working in condensed matter theory or those interested in advanced numerical methods for electronic simulation.

Quantum Monte-Carlo Programming: For Atoms, Molecules, Clusters, and Solids

by Wolfgang Schattke Ricardo Díez Muiño

Quantum Monte Carlo is a large class of computer algorithms that simulate quantum systems to solve many body systems in order to investigate the electronic structure of many-body systems. <P><P>This book presents a numeric approach to determine the electronic structure of atoms, molecules and solids. Because of the simplicity of its theoretical concept, the authors focus on the variational Quantum-Monte-Carlo (VQMC) scheme. The reader is enabled to proceed from simple examples as the hydrogen atom to advanced ones as the Lithium solid. Several intermediate steps cover the Hydrogen molecule, how to deal with a two electron systems, going over to three electrons, and expanding to an arbitrary number of electrons to finally treat the three-dimensional periodic array of Lithium atoms in a crystal. The exmples in the field of VQMC are followed by the subject of diffusion Monte-Calro (DMC) which covers a common example, the harmonic ascillator. The book is unique as it provides both theory and numerical programs. It includes rather practical advices to do what is usually described in a theoretical textbook, and presents in more detail the physical understanding of what the manual of a code usually promises as result. Detailed derivations can be found at the appendix, and the references are chosen with respect to their use for specifying details or getting an deeper understanding .The authors address an introductory readership in condensed matter physics, computational phyiscs, chemistry and materials science. As the text is intended to open the reader's view towards various possibilities of choices of computing schemes connected with the method of QMC, it might also become a welcome literature for researchers who would like to know more about QMC methods. The book is accompanied with a collection of programs, routines, and data.

Quantum Nano-Plasmonics

by Witold A. Jacak

With examples and clear explanation throughout, this step-by-step approach makes quantum theory of plasmons accessible to readers without specialized training in theory. Jacak uses original research results to offer a fully analytical theory formulation suitable for further development and applications. The theory is focused on the Random Phase Approximation description of plasmons in metallic nano-structures, previously defined for bulk metal. Particular attention is paid to large damping of plasmons in nanostructures including electron scattering and Lorentz friction losses, quantum description of plasmon photovoltaic effect is presented and there is in-depth analysis of plasmon-polariton kinetics in metallic nano-chains. Suitable for students in the field of plasmonics, opto-electronics and photonics, and for researchers active in the field of photo-voltaics, opto-electronics, nano-plasmonics and nano-photonics. Also of help to researchers in soft plasmonics with applications to electro-signalling in neurons.

The Quantum Nature of Things: How Counting Leads to the Quantum World

by T R Robinson

This book offers readers an entirely original and unconventional view of quantum mechanics. It is a view that accepts quantum mechanics as the natural way to think about the way nature works, rather than the view commonly expressed, especially in books on quantum physics, that quantum theory is weird and counterintuitive. It is based on the concept of itemization. From this simple premise, quantities like energy and momentum, both linear and angular emerge naturally, as do configuration space, potentials, the electromagnetic field, many-body dynamics, special relativity and relativistic wave mechanics. The many-body dynamics, because it is not tied to physics from the outset, can be applied to population dynamics outside physics as well as the usual physical situations. From this emerges much of the basic physics that describes, mathematically, how the natural world behaves. This accessible introduction does not require exotic maths, and is aimed at inquisitive physics students and professionals who are interested in exploring unconventional approaches to physics. It may also be of interest to anyone studying quantum information theory or quantum computing. Key Features Provides a unique, new approach to understanding quantum mechanics. Uses basic concepts and mathematical methods accessible at the undergraduate level. Presents applications outside physics, including a newly devised and original model of cell division that shows how cancer-cell population explosions occur.

Quantum Network with Multiple Cold Atomic Ensembles (Springer Theses)

by Bo Jing

This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.

Quantum Networks: Introduction and Applications

by Ming-Xing Luo

This book provides a comprehensive overview of the rapidly advancing research in quantum networks, both in theory and application. While the classical internet has become essential in our daily lives, its communication techniques have limitations, such as vulnerability to interception and eavesdropping. Quantum networks, by transmitting quantum qubits, address these security concerns using the principles of quantum mechanics, such as superposition, no-cloning, and Heisenberg uncertainty. Kimble first proposed the concept of a quantum internet in 2008, envisioning a network that harnesses quantum devices and laws to transmit information. Wehner and colleagues reviewed the steps necessary to achieve a quantum internet in 2018, outlining development stages leading to increasingly powerful applications. While a fully functional quantum internet is still in progress, significant advances have been made through experiments, such as satellite-based quantum key distribution networks and quantum metropolitan area networks. This book aims to provide a unified theoretical framework for students and researchers interested in the quantum internet, offering insights into topics like network communication theory, secure communication, distributed computation, nonlocality, and quantum configuration. By presenting cutting-edge research and potential applications in the field of quantum information processing, including the quantum internet, this book stands out as a valuable resource for beginners, undergraduate students, graduate students, and researchers in physics, computer science, and information science. It bridges the gap between theoretical perspectives and practical applications, offering a comprehensive guide to the exciting possibilities of quantum networks.

Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics (Aristotelian Society Monographs #1)

by Tim Maudlin

The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell’s Theorem and its implication for the relativistic account of space and time Discusses Roderich Tumiulka’s explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell’s inequality. Discusses the "Free Will Theorem" of John Conway and Simon Kochen Introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help inform physics

Quantum Nonlocality and Reality

by Mary Bell Shan Gao

Combining twenty-six original essays written by an impressive line-up of distinguished physicists and philosophers of physics, this anthology reflects some of the latest thoughts by leading experts on the influence of Bell's theorem on quantum physics. Essays progress from John Bell's character and background, through studies of his main work, and on to more speculative ideas, addressing the controversies surrounding the theorem, and investigating the theorem's meaning and its deep implications for the nature of physical reality. Combined, they present a powerful comment on the undeniable significance of Bell's theorem for the development of ideas in quantum physics over the past 50 years. Questions surrounding the assumptions and significance of Bell's work still inspire discussion in the field of quantum physics. Adding to this with a theoretical and philosophical perspective, this balanced anthology is an indispensable volume for students and researchers interested in the philosophy of physics and the foundations of quantum mechanics.

Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World

by Gregg Jaeger

This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the conceptual grounds underlying the unique nature of many quantum phenomena.

Quantum Optical Processes: From Basics to Applications (Lecture Notes in Physics #976)

by Sintayehu Tesfa

This book is a self-contained guide to the world of quantum optical processes which addresses different aspects relevant in quantum optics and quantum information. The basic descriptions, measurement techniques, possible sources, nonclassical features, practical implications and applications of the quantization of light and its interaction with matter, are explored. The observed quantum properties such as coherent superposition, entanglement, nonlocality, decoherence and no-cloning, are discussed. The quantum optical processes such as continuous variable entanglement swapping, teleportation and telecloning from which follow the practical aspects such as quantum gate operations, cryptography and error correction are considered. In turn, the advantages and inherent challenges including the foresight in implementing continuous variable quantum communication and computation protocols are highlighted. The author gives a concise background with corresponding applications, the necessary mathematical derivation, simplified examples, illustrations and demonstrations, and the relative interpretations and outlooks. This book is intended to serve a multi-disciplinary readership, namely the atomic physics and quantum optics communities who seek to extend their research to applications, especially, to the field of quantum information processing as well as the theoretical quantum information community who builds up research on physically realizable systems such as optical setups and various atomic schemes. The content of this book also attracts other communities such as photonics who seeks to link research with continuous variable quantum information processing.

Quantum Optics

by Girish S. Agarwal

In the last decade many important advances have taken place in the field of quantum optics, with numerous potential applications. Ideal for graduate courses on quantum optics, this textbook provides an up-to-date account of the basic principles of the subject. Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement, quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics. The textbook features end-of-chapter exercises with solutions available for instructors at www. cambridge. org/9781107006409. It is invaluable to both graduate students and researchers in physics and photonics, quantum information science and quantum communications.

Quantum Optics: Taming the Quantum (Graduate Texts in Physics)

by Pierre Meystre

This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research.

Quantum Optics

by Miguel Orszag

This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to deepen the knowledge.

Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence

by Miguel Orszag

This revised new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. This fourth edition provides a new chapter on weak measurement, as well as a new chapter on complementarity. There is also new material included for atom optics and new problems have been added. Each topic is presented in a unified and didactic manner, and is accompanied by specific problems and hints to solutions to deepen the knowledge.

Refine Search

Showing 61,276 through 61,300 of 79,860 results