- Table View
- List View
Protein Design: Methods and Applications (Methods in Molecular Biology #1216)
by Valentin KöhlerProtein Design: Method and Applications, Second Edition expands upon the previous edition with current, detailed ideas on how to approach a potential protein design project. With new chapters on metals as structure-forming elements and functional sites, the design and characterization of fluorinated proteins, top-down symmetric deconstruction and the design of protein libraries and novel or repurposed enzymes. Written in the highly successful Methods in Molecular Biologyseries format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and intuitive, Protein Design: Method and Applications, Second Edition provides a number of practical protocols and instructive reviews to aid in the creation of new experiments.
Protein Discovery Technologies
by Renata Pasqualini Wadih ArapA True Insider's Guide to the Field - Then and Now Until now, there has not been a book that effectively addresses the historical basis of protein discovery. Featuring contributions from a distinguished international panel of experts, Protein Discovery Technologies elucidates the principles, techniques, strategies, and broad range of applications o
Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods (Methods in Molecular Biology #1129)
by Nikolaos E. LabrouProteins are the most diverse group of biologically important substances. With the recent technological advances in the genomics area and the efforts in proteomics research, the rate of discovery for new proteins with unknown structure and function has increased. These proteins generated from genomic approaches present enormous opportunities for research and industrial application. Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods is a compilation of chapters within the exciting area of protein purification designed to give the laboratory worker the information needed to design and implement a successful purification strategy. It presents reliable and robust protocols in a concise form, emphasizing the critical aspects on practical problems and questions encountered at the lab bench. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods will be an ideal source of scientific information to advanced students, junior researchers, and scientists involved in health sciences, cellular and molecular biology, biochemistry, and biotechnology and other related areas in both academia and industry.
Protein Downstream Processing: Design, Development, and Application of High and Low-Resolution Methods (Methods in Molecular Biology #2178)
by Nikolaos E. LabrouThis second edition volume expands on the previous edition with updated research and techniques to help laboratory workers design and implement a successful purification strategy, emphasize critical aspects on practical problems, and answers questions encountered at the lab bench. The chapters in this book are divided into five parts: Part One discusses an overview of screening and design of purification strategies and covers initial aspects on high-throughput screening, methods development, and media selection; Parts Two and Three explore low- and high-resolution methods, with emphasis on affinity chromatography; Part Four describes analytical techniques of purified proteins; and Part Five presents selected examples and case studies to discuss the aforementioned. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Authoritative and comprehensive, Protein Downstream Processing: Design, Development, and Application of High and Low-Resolution Methods, Second Edition is an ideal source of information to advanced students, junior researchers, and scientists involved in health sciences, cellular and molecular biology, biochemistry, biotechnology, and other related areas in both academia and industry.
Protein Dynamics
by Dennis R. LivesayIn Protein Dynamics: Methods and Protocols, expert researchers in the field detail both experimental and computational methods to interrogate molecular level fluctuations. Chapters detail best-practice recipes covering both experimental and computational techniques, reflecting modern protein research. Written in the highly successful Methods in Molecular Biology(tm) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Dynamics: Methods and Protocols describes the most common and powerful methods used to characterize protein dynamics.
Protein Dysfunction in Human Genetic Disease
by D. M. Swallow Y. H. EdwardsRecent years have seen rapid advances in our understanding of genetic diseases in terms of their molecular origins. The book focuses on DNA mutations which give rise to abnormalities of protein structure and function in genetic disease.
Protein Electron Transfer
by Derek S. BendallThis book is unique; the factual content and ideas it expounds are only just beginning to be touched upon in standard texts. Protein Electron Transfer is a major collaborative effort by leading experts and explores the molecular basis of the rapidly expan
Protein Electrophoresis
by Biji T. Kurien R. Hal ScofieldProteins are the functional units of the cellular machinery and they provide significant information regarding the molecular basis of health and disease. Therefore, techniques to separate and isolate the various proteins are critical to studying and understanding their functional characteristics. One of the widely used techniques for this purpose is electrophoresis. In Protein Electrophoresis: Methods and Protocols, contributions from experts in the field have been collected in order to provide practical guidelines to this complex study. Each chapter outlines a specific electrophoretic variant in detail so that laboratory scientists may perform a technique new to their lab without difficulty. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Electrophoresis: Methods and Protocols seeks to serve laboratory scientists with well-honed, detailed methodologies in an effort to further our knowledge of this essential field.
Protein Engineering
by Uwe T. Bornscheuer Matthias HöhneThis volume details basic and advanced protocols for both stages of protein engineering: the library design phase and the identification of improved variants by screening and selection. Chapters focus on enzyme engineering using rational and semi-rational approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Protein Engineering: Methods and Protocols aims to aid scientists in the planning and performance of their experiments.
Protein Engineering: Tools and Applications (Advanced Biotechnology)
by Sang Yup Lee Jens Nielsen Gregory StephanopoulosA one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Protein Engineering and Design
by Sheldon J. Park Jennifer R. CochranExperimental protein engineering and computational protein design are broad but complementary strategies for developing proteins with altered or novel structural properties and biological functions. By describing cutting-edge advances in both of these fields, Protein Engineering and Design aims to cultivate a synergistic approach to protein science
Protein Engineering For Industrial Biotechnology
by Lilia AlberghinaProtein engineering has proved to be one of the more fruitful technological approaches in biotechnology, being both very powerful and able to generate valuable intellectual property. This book aims to present examples in which the application of protein engineering has successfully solved problems arising in industrial biotechnology. There is a sec
Protein Engineering Handbook: Volume 3
by Stefan Lutz Uwe T. BornscheuerThis introduction collects 17 innovative approaches to engineer novel and improved proteins for diverse applications in biotechnology, chemistry, bioanalytics and medicine. As such, key developments covered in this reference and handbook include de novo enzyme design, cofactor design and metalloenzymes, extremophile proteins, and chemically resistant proteins for industrial processes. The editors integrate academic innovations and industrial applications so as to arrive at a balanced view of this multi-faceted topic. Throughout, the content is chosen to complement and extend the previously published two-volume handbook by the same editors, resulting in a superb overview of this burgeoning field.
Protein Engineering Handbook: Volume 3
by Stefan Lutz Uwe T. BornscheuerUnparalleled in size and scope, this new major reference integrates academic and industrial knowledge into a single resource, allowing for a unique overview of the entire field. Adopting a systematic and practice-oriented approach, and including a wide range of technical and methodological information, this highly accessible handbook is an invaluable 'toolbox' for any bioengineer. In two massive volumes, it covers the full spectrum of current concepts, methods and application areas.
Protein Engineering Protocols
by Katja Arndt Kristian MüllerProtein engineering is a fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry, with the goal of developing useful or valuable proteins. Divided into two sections, Protein Engineering Protocols reviews rational protein design strategies and directed evolutionary techniques, and their impact on protein engineering. The first section presents design and computational strategies for protein engineering focusing on designing a protein with desired properties, including examples covering a wide range of engineering techniques, such as protein-protein interactions, DNA binding, antibody mimics, and enzymatic activity. The second section on evolutionary techniques provides step-by-step instructions on library design and statistical assessment of library quality. New methods for DNA shuffling as well as different selection strategies are also presented. Following the successful Methods in Molecular BiologyTM series format, this volume provides a comprehensive guide to the methods used at every stage of the engineering process. By combining a thorough theoretical foundation with detailed protocols, Protein Engineering Protocols will be invaluable to all research workers in the area, from graduate students to senior investigators.
Protein Engineering Techniques
by Krishna Mohan Poluri Khushboo GulatiThis brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.
Protein Expression in Mammalian Cells
by James L HartleyThrough all of the recent progress provided by high throughput DNA sequencing technologies, it has become clearer and clearer that the study of proteins and protein organelles will be the key to unlocking our ability to manipulate cells and intervene in human disease. In Protein Expression in Mammalian Cells: Methods and Protocols, expert researchers in the field present a compendium of vital techniques to further our knowledge of mammalian protein expression. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and concise, Protein Expression in Mammalian Cells: Methods and Protocols will aid scientists seeking to delve deeper into our own biology through the medium of other mammalian cells and proteins.
Protein Folding
by Alka DwevediThe book will discuss classes of proteins and their folding, as well as the involvement of bioinformatics in solving the protein folding problem. In vivo and in vitro folding mechanisms are examined, as well as the failures of in vitro folding, a mechanism helpful in understanding disease caused by misfolding. The role of energy landscapes is also discussed and the computational approaches to these landscapes.
Protein Folding: An Introduction (SpringerBriefs in Molecular Science)
by Cláudio M. Gomes Patrícia F. N. FaíscaThis snapshot volume is designed to provide a smooth entry into the field of protein folding. Presented in a concise manner, each section introduces key concepts while providing a brief overview of the relevant literature. Outlook subsections will pinpoint specific aspects related to emerging methodologies, concepts and trends.
Protein Folding: Methods and Protocols (Methods in Molecular Biology #2376)
by Victor MuñozThis volume provides comprehensive protocols on experimental and computational methods that are used to study probe protein folding reactions and mechanisms. Chapters divided into five parts detail protein engineering, protein chemistry, experimental approaches to investigate the thermodynamics and kinetics of protein folding transitions, probe protein folding at the single molecule, analysis and interpretation of computer simulations, procedures and tools for the prediction of protein folding properties. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Folding: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field.
Protein Folding and Metal Ions: Mechanisms, Biology and Disease
by Cláudio M. Gomes Pernilla Wittung-StafshedeThe role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an
Protein Folding Dynamics and Stability: Experimental and Computational Methods
by Prakash Saudagar Timir TripathiThis book describes recent important advancements in protein folding dynamics and stability research, as well as explaining fundamentals and examining potential methodological approaches in protein science. In vitro, in silico, and in vivo method based research of how the stability and folding of proteins help regulate the cellular dynamics and impact cell function that are crucial in explaining various physiological and pathological processes. This book offers a comprehensive coverage on various techniques and related recent developments in the experimental and computational methods of protein folding, dynamics, and stability studies. The book is also structured in such a way as to summarize the latest developments in the fiddle and key concepts to ensure that readers can understand advanced concepts as well as the fundamental big picture. And most of all, fresh insights are provided into the convergence of protein science and technology. Protein Folding Dynamics and Stability is an ideal guide to the field that will be of value for all levels of researchers and advanced graduate students with training in biochemical laboratory research.
Protein Folding, Misfolding, and Disease
by Stephen P. Bottomley Roberto Cappai Andrew F. Hill Kevin J. BarnhamProtein misfolding is a key feature of many disorders in humans, given that over twenty proteins are known to misfold and cause disease. In Protein Folding, Misfolding, and Disease: Methods and Protocols, experts in the field present a collection of current methods for studying the analysis of protein folding and misfolding, featuring strategies for expressing and refolding recombinant proteins which can then be utilized in subsequent experiments. This detailed volume also covers methods for analyzing the formation of amyloid, protocols for determining the size and structure of native and misfolded proteins, as well as specific examples of where misfolded proteins can be examined using state-of -the-art technologies. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Up to date and authoritative, Protein Folding, Misfolding, and Disease: Methods and Protocols offers researchers the tools necessary to move ahead in this vital field.
Protein Folding Protocols
by Yawen BaiCovering experiment and theory, bioinformatics approaches, and state-of-the-art simulation protocols for better sampling of the conformational space, this volume describes a broad range of techniques to study, predict, and analyze the protein folding process. Protein Folding Protocols also provides sample approaches toward the prediction of protein structure starting from the amino acid sequence, in the absence of overall homologous sequences.
Protein Formulation and Delivery (Drugs and the Pharmaceutical Sciences)
by Eugene J. McNally Jayne E. HastedtThis title is intended to assist pharmaceutical scientists in the development of stable protein formulations during the early stages of the product development process, providing a comprehensive review of mechanisms and causes of protein instability in formulation development, coverage of accelerated stability testing methods and relevant analytica