Browse Results

Showing 67,001 through 67,025 of 76,027 results

Structural Health Monitoring Damage Detection Systems for Aerospace (Springer Aerospace Technology)

by Markus G. R. Sause Elena Jasiūnienė

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students.This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.

Structural Health Monitoring Using Genetic Fuzzy Systems

by Ranjan Ganguli Prashant M. Pawar

Structural health monitoring (SHM) has emerged as a prominent research area in recent years owing to increasing concerns about structural safety, and the need to monitor and extend the lives of existing structures. Structural Health Monitoring Using Genetic Fuzzy Systems elaborates the process of intelligent SHM development and implementation using the evolutionary system. The use of a genetic algorithm automates the development of the fuzzy system, and makes the method easy to use for problems involving a large number of measurements, damage locations and sizes; such problems being typical of SHM. The ideas behind fuzzy logic, genetic algorithms and genetic fuzzy systems are also explained. The functionality of the genetic fuzzy system architecture is elucidated within a case-study framework, covering: * SHM of beams; * SHM of composite tubes; and * SHM of helicopter rotor blades. Structural Health Monitoring Using Genetic Fuzzy Systems will be useful for aerospace, civil and mechanical engineers working with structures and structured components. It will also be useful for computer scientists and applied mathematicians interested in the application of genetic fuzzy systems to engineering problems.

Structural Immunology (Advances in Experimental Medicine and Biology #1172)

by Tengchuan Jin Qian Yin

This book presents a comprehensive overview of important immune molecules and their structure-function relationships. The immune system is highly complex, consisting of a network of molecules, cells, tissues and organs, and the immune reaction is involved in various physiological as well as pathological processes, including development, self-tolerance, infection, immunity, and cancer. Numerous molecules participate in immune recognition, inhibition and activation, and these important immune molecules can be roughly divided into cell surface receptors, intracellular receptors and intracellular signaling molecules. The study of how these immune molecules function at molecular level has laid the foundation for understanding the immune system. The book provides researchers and students with the latest research advances concerning the structural biology of key immune molecules/pathways, and offers immunologists essential insights into how these immune molecules function.

Structural Impact

by Norman Jones

Structural Impact is concerned with the behaviour of structures and components subjected to large dynamic, impact and explosive loads which produce inelastic deformations and is of interest for safety calculations, hazard assessments and energy absorbing systems throughout industry. The first five chapters of this book introduce the rigid plastic methods of analysis for the static behaviour and the dynamic response of beams, plates and shells. These chapters develop the key features of the subject from an engineering viewpoint, and are followed by several chapters on various phenomena of importance to structural impact. The influence of transverse shear, rotatory inertia, finite displacements and dynamic material properties are introduced and studied in some detail. Dynamic progressive buckling, which develops in several energy absorbing systems, is then examined, while the phenomenon of dynamic plastic buckling is introduced in the penultimate chapter. The last chapter on the scaling laws is important for relating the response of small-scale experimental tests to the dynamic behaviour of full-scale prototypes. This text is invaluable to undergraduates, graduates, and professionals who want to learn more about the behaviour of structures subjected to large impact, dynamic and blast loadings producing an inelastic response.

Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences

by Christiane R. Timmel Jeffrey R. Harmer

Pulse Dipolar Electron Spin Resonance: Distance Measurements by Peter P. Borbat, Jack H. Freed. Interpretation of Dipolar EPR Data in Terms of Protein Structure, by Gunnar Jeschke. Site-Directed Nitroxide Spin Labeling of Biopolymers, by Sandip A. Shelke and Snorri Th. Sigurdsson. Metal-Based Spin Labeling for Distance Determination, by Daniella Goldfarb. Structural Information from Spin-Labelled Membrane-Bound Proteins, by Johann P. KLare, Heinz-Jürgen Steinhoff. Structural Information from Oligonucleotides, by Richard Ward and Olav Schiemann. Orientation selective DEER using rigid spin labels, cofactors, metals, and clusters, by Claudia E. Tait, Alice M. Bowen, Christiane R. Timmel, Jeffrey Harmer

Structural Integrity Assessment: Proceedings of ICONS 2018 (Lecture Notes in Mechanical Engineering)

by Raghu V. Prakash R. Suresh Kumar Atikukke Nagesha Gomathy Sasikala Arun Kumar Bhaduri

This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area.

Structural Integrity Assessment of Engineering Components Under Cyclic Contact (Structural Integrity #9)

by Oleksandra Datsyshyn Volodymyr Panasyuk

This book focuses on surface layers fracture of cyclical contacting bodies (machine parts). Calculation models and calculating procedures of stress-strain states of cyclically contacting solids with cracks, are included. Recommendations for the optimization of operating parameters of joints (contact stresses magnitude, friction/lubrication conditions, materials crack resistance etc) for elements of rolling pairs (wheel–rail systems, backup roll – working roll of rolling mills etc.) and some fretting pairs are formulated.

Structural Integrity Cases in Mechanical and Civil Engineering (Structural Integrity #23)

by Shahrum Abdullah Salvinder Singh Karam Singh Noorsuhada Md Nor

This book covers most of the damage mechanism in the scope of mechanical engineering and civil engineering. The failure pattern of various materials and structures is mainly discussed. The sub-topics covers fatigue damage, fatigue crack initiation and propagation, life prediction techniques, computational fracture mechanics, dynamic fracture, damage mechanics and assessment, non-destructive test (NDT), concrete failure assessment, failure on soil structures, structural durability and reliability, structural health monitoring, construction damage recovery, and any relevant topics related to failure analysis.

The Structural Links between Ecology, Evolution and Ethics

by Donato Bergandi

Evolutionary biology, ecology and ethics: at first glance, three different objects of research, three different worldviews and three different scientific communities. In reality, there are both structural and historical links between these disciplines. First, some topics are obviously common across the board. Second, the emerging need for environmental policy management has gradually but radically changed the relationship between these disciplines. Over the last decades in particular, there has emerged a need for an interconnecting meta-paradigm that integrates more strictly evolutionary studies, biodiversity studies and the ethical frameworks that are most appropriate for allowing a lasting co-evolution between natural and social systems. Today such a need is more than a mere luxury, it is an epistemological and practical necessity.

Structural Mechanics: Analytical and Numerical Approaches for Structural Analysis

by Lingyi Lu Junbo Jia Zhuo Tang

This book covers both standard and advanced topics of structural mechanics. Standard subjects covered include geometric stability, forces and displacements of statically determinate structures, force and displacement method, and influence lines. Advanced topics include matrix displacement method, dynamics of structures, and limit loading. The book serves both as a classroom textbook and as a permanent engineering reference. It is written in such a way that it can be followed by anyone with a basic knowledge of classical and material mechanics.

Structural Mechanics in Lightweight Engineering

by Christian Mittelstedt

This book provides a comprehensive yet concise presentation of the analysis methods of lightweight engineering in the context of the statics of beam structures and is divided into four sections. Starting from very general remarks on the fundamentals of elasticity theory, the first section also addresses plane problems as well as strength criteria of isotropic materials. The second section is devoted to the analytical treatment of the statics of beam structures, addressing beams under bending, shear and torsion. The third section deals with the work and energy methods in lightweight construction, spanning classical methods and modern computational methods such as the finite element method. Finally, the fourth section addresses more advanced beam models, discussing hybrid structures as well as laminated and sandwich beams, in addition to shear field beams and shear deformable beams. This book is intended for students at technical colleges and universities, as well as for engineers in practice and researchers in engineering.

Structural Mechanics of Anti-Sandwiches

by Marcus Aßmus

This book provides an extensive introduction to the mechanics of anti-sandwiches: non-classical composites with multiple homogeneous layers but widely differing parameters concerning their geometry and materials. Therefore, they require special attention in the context of structural mechanics. The theoretical framework presented here is based on a five parametric, planar continuum, which is a pragmatic version of the COSSERAT shell. The direct approach used here is enlarged where constraints are introduced to couple layers and furnish a layer-wise theory. Restrictions are made in terms of linearity – geometrical and physical. After having defined appropriate variables for the kinematics and kinetics, linear elastic material behaviour is considered, where the constitutive tensors are introduced in the context of isotropy. The basics are presented in a clear and distinct manner using index-free tensor notation. This format is simple, concise, and practical. Closed-form solutions of such boundary value problems are usually associated with serious limitations on the boundary conditions, which constitutes a serious disadvantage. To construct approximate solutions, a variational method is employed as the basis for computational procedures where the Finite Element Method is applied. Therefore, the introduction of the vector-matrix notation is convenient. Based on the plane considerations, a finite eight-node SERENDIPITY element with enlarged degrees of freedom is realised. To avoid artificial stiffening effects, various integration types are applied, and the solutions generated are subsequently verified with closed-form solutions for monolithic limiting cases. Within this setting, it is possible to efficiently calculate the global structural behaviour of Anti-Sandwiches, at least up to a certain degree. The power of the proposed method in combination with the numerical solution approach is demonstrated for several case and parameter studies. In this regard, the optimal geometrical and material parameters to increase stiffness are analysed and the results for the kinematic and kinetic quantities are discussed.

Structural Mechanics with a Pen: A Guide to Solve Finite Difference Problems

by Andreas Öchsner

This book is focused on the introduction of the finite difference method based on the classical one-dimensional structural members, i.e., rods/bars and beams. It is the goal to provide a first introduction to the manifold aspects of the finite difference method and to enable the reader to get a methodical understanding of important subject areas in structural mechanics. The reader learns to understand the assumptions and derivations of different structural members. Furthermore, she/he learns to critically evaluate possibilities and limitations of the finite difference method. Additional comprehensive mathematical descriptions, which solely result from advanced illustrations for two- or three-dimensional problems, are omitted. Hence, the mathematical description largely remains simple and clear.

Structural Methods in Molecular Inorganic Chemistry

by Carole Morrison D. W. Rankin Norbert Mitzel

Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems.Following a general introduction to the tools and concepts in structural chemistry, the following topics are covered in detail:* computational chemistry* nuclear magnetic resonance spectroscopy * electron paramagnetic resonance spectroscopy * Mössbauer spectroscopy * rotational spectra and rotational structure * vibrational spectroscopy * electronic characterization techniques* diffraction methods * mass spectrometryThe final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems.Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material.Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.

Structural Methods in the Study of Complex Systems (Lecture Notes in Control and Information Sciences #482)

by Elena Zattoni Anna Maria Perdon Giuseppe Conte

​Structural Methods in the Study of Complex Systems helps the reader respond to the challenge of mastering complexity in systems and control. The book details the fundamental control problems arising from complex dynamical systems and shows how they can be tackled effectively by means of methods developed from graph theory, differential algebra and geometric approaches. These “structural methods” produce abstractions that fit a wide variety of applications by taking advantage of their intrinsic focus on the essential characteristics of dynamical systems, their geometric perspective and visual representation, and their algebraic formalization and ability to generate algorithmic frameworks to complement the theoretical treatment. The original work and latest achievements of the contributors, expanding on material presented at a workshop organized to coincide with the 2018 European Control Conference will assist systems and control scientists interested in developing theoretical and computational tools to solve analysis and synthesis problems involving complex dynamical systems. The contributions provide a comprehensive picture of available results along with a stimulating view of possible directions for future investigations in the field. Emphasis is placed on methods with solid computational background and on specific engineering applications so that readers from both theoretical and practical backgrounds will find this collection of use.

Structural Modeling of Metamaterials (Advanced Structured Materials #144)

by Igor S. Pavlov Vladimir I. Erofeev

This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.

Structural Optimization with Uncertainties

by Pekka Neittaanmäki N. V. Banichuk

This monograph is devoted to the exposition of new ways of formulating problems of structural optimization with incomplete information and techniques of solution. Research results concerning the optimum shape and structural properties of the bodies subjected to external loadings are recapitulated. Problems of optimal design with incomplete information, accounting for the interaction between the structure and its environment, properties of materials, existence of initial damages and damage accumulation are studied. This volume treats overcoming the corresponding mathematical difficulties caused by raising local functionals. Most of the book is devoted to the minimax approach using worst case scenarios, i.e. the so-called guaranteed approach. However, the probabilistic approach, that does not guarantee the result, is also described in the monograph, because it gives more "optimistic" results. Also, the mixed probabilistic guaranteed approach is discussed and applied for the solution of structural optimization problems with uncertainties.

Structural Performance of Masonry Elements: Mortar Coating Layers Influence (SpringerBriefs in Applied Sciences and Technology)

by J. M. Delgado Ana Sofia Guimarães António C. Azevedo Romilde A. Oliveira Fernando A.N. Silva Carlos W.A.P. Sobrinho

This book discusses the main mechanical features of masonry buildings and the peculiarities that affect their structural behaviour. It also examines technical information regarding accidents that have occurred in recent years in the Metropolitan Region of Recife, along with the historical records of these events, followed by indications of the causes for the collapse. The book offers extensive experimental results that make it possible to identify the contribution of several mortar rendering layers to the load capacity of the tested specimens. Lastly, it explores the factors that influenced the load capacity of the tested specimens.

A Structural Perspective on Respiratory Complex I: Structure and Function of NADH:ubiquinone oxidoreductase

by Leonid Sazanov

The book contains chapters written by leaders in the research on the structure and function of respiratory complex I. It will provide a concise and authoritative summary of the current knowledge on complex I of respiratory chains. This enzyme is central to energy metabolism and is implicated in many human neurodegenerative diseases, as well as in aging. Until recently it was poorly understood on a structural level, and this book will provide a timely reference resource. Such a book was not published previously. The last time a minireview series on complex I were published was in 2001, and since then complex I field changed quite dramatically.

Structural Proteomics

by Mitchell Guss Bostjan Kobe Thomas Huber

The objective of this volume is to provide readers with a current view of all aspects of the 'pipeline' that takes protein targets to structures and how these have been optimised. This volume includes chapters describing, in-depth, the individual steps in the Structural Genomics pipeline, as well as less detailed overviews of individual Structural Genomics initiatives. It is the first book of protocols to cover techniques in a new and emerging field.

Structural Proteomics

by Raymond J. Owens

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins, notably integral membrane proteins and multi-protein complexes. Structural Proteomics: High-Throughput Methods, Second Edition begins by exploring the resources available for curation, annotation, and structure prediction in silico, and continues with methods for sample preparation of both proteins and crystals, as well as structural characterization techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and up-to-date, Structural Proteomics: High-Throughput Methods, Second Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.

Structural Proteomics: High-Throughput Methods (Methods in Molecular Biology #2305)

by Raymond J. Owens

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins. Beginning with a section on structural bioinformatics, the book continues with sections covering the challenge of producing high quality samples for structural studies, particularly mammalian membrane proteins and protein complexes, as well as protocols for structure determination, including the use of electrons in structural biology and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Structural Proteomics: High-Throughput Methods, Third Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.Chapter 9 is available open access under a CC BY 4.0 license.

Structural Realism

by Dean Rickles Elaine Landry

Structural realism has rapidly gained in popularity in recent years, but it has splintered into many distinct denominations, often underpinned by diverse motivations. There is, no monolithic position known as 'structural realism,' but there is a general convergence on the idea that a central role is to be played by relational aspects over object-based aspects of ontology. What becomes of causality in a world without fundamental objects? In this book, the foremost authorities on structural realism attempt to answer this and related questions: 'what is structure?' and 'what is an object?' Also featured are the most recent advances in structural realism, including the intersection of mathematical structuralism and structural realism, and the latest treatments of laws and modality in the context of structural realism. The book will be of interest to philosophers of science, philosophers of physics, metaphysicians, and those interested in foundational aspects of science.

Structural Reliability and Time-Dependent Reliability (Springer Series in Reliability Engineering)

by Cao Wang

This book provides structural reliability and design students with fundamental knowledge in structural reliability, as well as an overview of the latest developments in the field of reliability engineering. It addresses the mathematical formulation of analytical tools for structural reliability assessment. This book offers an accessible introduction to structural reliability assessment and a solid foundation for problem-solving. It introduces the topic and background, before dealing with probability models for random variables. It then explores simulation techniques for single random variables, random vectors consisting of different variables, and stochastic processes. The book addresses analytical approaches for structural reliability assessment, including the reliability models for a single structure and those for multiple structures, as well as discussing the approaches for structural time-dependent reliability assessment in the presence of discrete and continuous load processes. This book delivers a timely and pedagogical textbook, including over 170 worked-through examples, detailed solutions, and analytical tools, making it of interest to a wide range of graduate students, researchers, and practitioners in the field of reliability engineering.

Structural Science of Crystalline Polymers: Basic Concepts and Practices

by Kohji Tashiro

This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure–Property Relationship being the second volume by the same author.

Refine Search

Showing 67,001 through 67,025 of 76,027 results