Browse Results

Showing 67,576 through 67,600 of 84,695 results

Structural Immunology (Advances in Experimental Medicine and Biology #1172)

by Tengchuan Jin Qian Yin

This book presents a comprehensive overview of important immune molecules and their structure-function relationships. The immune system is highly complex, consisting of a network of molecules, cells, tissues and organs, and the immune reaction is involved in various physiological as well as pathological processes, including development, self-tolerance, infection, immunity, and cancer. Numerous molecules participate in immune recognition, inhibition and activation, and these important immune molecules can be roughly divided into cell surface receptors, intracellular receptors and intracellular signaling molecules. The study of how these immune molecules function at molecular level has laid the foundation for understanding the immune system. The book provides researchers and students with the latest research advances concerning the structural biology of key immune molecules/pathways, and offers immunologists essential insights into how these immune molecules function.

Structural Impact

by Norman Jones

Structural Impact is concerned with the behaviour of structures and components subjected to large dynamic, impact and explosive loads which produce inelastic deformations and is of interest for safety calculations, hazard assessments and energy absorbing systems throughout industry. The first five chapters of this book introduce the rigid plastic methods of analysis for the static behaviour and the dynamic response of beams, plates and shells. These chapters develop the key features of the subject from an engineering viewpoint, and are followed by several chapters on various phenomena of importance to structural impact. The influence of transverse shear, rotatory inertia, finite displacements and dynamic material properties are introduced and studied in some detail. Dynamic progressive buckling, which develops in several energy absorbing systems, is then examined, while the phenomenon of dynamic plastic buckling is introduced in the penultimate chapter. The last chapter on the scaling laws is important for relating the response of small-scale experimental tests to the dynamic behaviour of full-scale prototypes. This text is invaluable to undergraduates, graduates, and professionals who want to learn more about the behaviour of structures subjected to large impact, dynamic and blast loadings producing an inelastic response.

Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences

by Christiane R. Timmel Jeffrey R. Harmer

Pulse Dipolar Electron Spin Resonance: Distance Measurements by Peter P. Borbat, Jack H. Freed. Interpretation of Dipolar EPR Data in Terms of Protein Structure, by Gunnar Jeschke. Site-Directed Nitroxide Spin Labeling of Biopolymers, by Sandip A. Shelke and Snorri Th. Sigurdsson. Metal-Based Spin Labeling for Distance Determination, by Daniella Goldfarb. Structural Information from Spin-Labelled Membrane-Bound Proteins, by Johann P. KLare, Heinz-Jürgen Steinhoff. Structural Information from Oligonucleotides, by Richard Ward and Olav Schiemann. Orientation selective DEER using rigid spin labels, cofactors, metals, and clusters, by Claudia E. Tait, Alice M. Bowen, Christiane R. Timmel, Jeffrey Harmer

Structural Integrity Assessment of Engineering Components Under Cyclic Contact (Structural Integrity #9)

by Oleksandra Datsyshyn Volodymyr Panasyuk

This book focuses on surface layers fracture of cyclical contacting bodies (machine parts). Calculation models and calculating procedures of stress-strain states of cyclically contacting solids with cracks, are included. Recommendations for the optimization of operating parameters of joints (contact stresses magnitude, friction/lubrication conditions, materials crack resistance etc) for elements of rolling pairs (wheel–rail systems, backup roll – working roll of rolling mills etc.) and some fretting pairs are formulated.

Structural Integrity Assessment: Proceedings of ICONS 2018 (Lecture Notes in Mechanical Engineering)

by Raghu V. Prakash R. Suresh Kumar Atikukke Nagesha Gomathy Sasikala Arun Kumar Bhaduri

This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area.

Structural Integrity Cases in Mechanical and Civil Engineering (Structural Integrity #23)

by Shahrum Abdullah Salvinder Singh Karam Singh Noorsuhada Md Nor

This book covers most of the damage mechanism in the scope of mechanical engineering and civil engineering. The failure pattern of various materials and structures is mainly discussed. The sub-topics covers fatigue damage, fatigue crack initiation and propagation, life prediction techniques, computational fracture mechanics, dynamic fracture, damage mechanics and assessment, non-destructive test (NDT), concrete failure assessment, failure on soil structures, structural durability and reliability, structural health monitoring, construction damage recovery, and any relevant topics related to failure analysis.

Structural Mechanics in Lightweight Engineering

by Christian Mittelstedt

This book provides a comprehensive yet concise presentation of the analysis methods of lightweight engineering in the context of the statics of beam structures and is divided into four sections. Starting from very general remarks on the fundamentals of elasticity theory, the first section also addresses plane problems as well as strength criteria of isotropic materials. The second section is devoted to the analytical treatment of the statics of beam structures, addressing beams under bending, shear and torsion. The third section deals with the work and energy methods in lightweight construction, spanning classical methods and modern computational methods such as the finite element method. Finally, the fourth section addresses more advanced beam models, discussing hybrid structures as well as laminated and sandwich beams, in addition to shear field beams and shear deformable beams. This book is intended for students at technical colleges and universities, as well as for engineers in practice and researchers in engineering.

Structural Mechanics of Anti-Sandwiches

by Marcus Aßmus

This book provides an extensive introduction to the mechanics of anti-sandwiches: non-classical composites with multiple homogeneous layers but widely differing parameters concerning their geometry and materials. Therefore, they require special attention in the context of structural mechanics. The theoretical framework presented here is based on a five parametric, planar continuum, which is a pragmatic version of the COSSERAT shell. The direct approach used here is enlarged where constraints are introduced to couple layers and furnish a layer-wise theory. Restrictions are made in terms of linearity – geometrical and physical. After having defined appropriate variables for the kinematics and kinetics, linear elastic material behaviour is considered, where the constitutive tensors are introduced in the context of isotropy. The basics are presented in a clear and distinct manner using index-free tensor notation. This format is simple, concise, and practical. Closed-form solutions of such boundary value problems are usually associated with serious limitations on the boundary conditions, which constitutes a serious disadvantage. To construct approximate solutions, a variational method is employed as the basis for computational procedures where the Finite Element Method is applied. Therefore, the introduction of the vector-matrix notation is convenient. Based on the plane considerations, a finite eight-node SERENDIPITY element with enlarged degrees of freedom is realised. To avoid artificial stiffening effects, various integration types are applied, and the solutions generated are subsequently verified with closed-form solutions for monolithic limiting cases. Within this setting, it is possible to efficiently calculate the global structural behaviour of Anti-Sandwiches, at least up to a certain degree. The power of the proposed method in combination with the numerical solution approach is demonstrated for several case and parameter studies. In this regard, the optimal geometrical and material parameters to increase stiffness are analysed and the results for the kinematic and kinetic quantities are discussed.

Structural Mechanics of Buried Pipes

by Reynold King Watkins Loren Runar Anderson

Buried pipes are a highly efficient method of transport. In fact, only open channels are less costly to construct. However, the structural mechanics of buried pipes can be complicated, and imprecisions in the properties of the soil envelope are usually too great to justify lengthy, complicated analyses. Designers and engineers need principles and m

Structural Mechanics with a Pen: A Guide to Solve Finite Difference Problems

by Andreas Öchsner

This book is focused on the introduction of the finite difference method based on the classical one-dimensional structural members, i.e., rods/bars and beams. It is the goal to provide a first introduction to the manifold aspects of the finite difference method and to enable the reader to get a methodical understanding of important subject areas in structural mechanics. The reader learns to understand the assumptions and derivations of different structural members. Furthermore, she/he learns to critically evaluate possibilities and limitations of the finite difference method. Additional comprehensive mathematical descriptions, which solely result from advanced illustrations for two- or three-dimensional problems, are omitted. Hence, the mathematical description largely remains simple and clear.

Structural Mechanics: Analytical and Numerical Approaches for Structural Analysis

by Junbo Jia Lingyi Lu Zhuo Tang

This book covers both standard and advanced topics of structural mechanics. Standard subjects covered include geometric stability, forces and displacements of statically determinate structures, force and displacement method, and influence lines. Advanced topics include matrix displacement method, dynamics of structures, and limit loading. The book serves both as a classroom textbook and as a permanent engineering reference. It is written in such a way that it can be followed by anyone with a basic knowledge of classical and material mechanics.

Structural Mechanics: Bridging Theoretical Foundations and Real-World Disasters

by Tomasz Wierzbicki Jiayin Ling

Structural Mechanics covers three different aspects of modern engineering: the foundation of structural mechanics, the solution to urgent industrial problems, and the reconstruction of major accidents. This book offers six case studies that teach how to identify the most important phase of the collapse or fracture of a complex system, develop a simple mathematically tractable model, and offer a discussion of the analytical and numerical solutions. This book originated from the lecture notes of Professor Tomasz Wierzbicki who taught at MIT and Stanford University. The notes were amended and improved many times over the years to provide a link between rigorous theoretical foundations with solutions to important engineering problems. The book discusses complex man-made structures under accidental impact or explosive loads, resulting in the loss of life and/or extensive property, infrastructural, and environmental damage. The book deals with reconstructing the sequence of events of such accidents from the structural point of view. The book is not restricted to the accident reconstruction only - concepts and solutions of the elasticity, advance plasticity and ductile fracture were used throughout the reconstruction of the accidents. The additional 17 lectures provide theoretical foundations for the elastic structures, plastic plates and shells, and ductile fracture. Not only is this an essential textbook for graduate students studying structural mechanics, it is also relevant to industry professionals, researchers, and academics in the field of engineering.

Structural Methods in Molecular Inorganic Chemistry

by Carole Morrison D. W. Rankin Norbert Mitzel

Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems.Following a general introduction to the tools and concepts in structural chemistry, the following topics are covered in detail:* computational chemistry* nuclear magnetic resonance spectroscopy * electron paramagnetic resonance spectroscopy * Mössbauer spectroscopy * rotational spectra and rotational structure * vibrational spectroscopy * electronic characterization techniques* diffraction methods * mass spectrometryThe final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems.Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material.Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.

Structural Methods in the Study of Complex Systems (Lecture Notes in Control and Information Sciences #482)

by Elena Zattoni Anna Maria Perdon Giuseppe Conte

​Structural Methods in the Study of Complex Systems helps the reader respond to the challenge of mastering complexity in systems and control. The book details the fundamental control problems arising from complex dynamical systems and shows how they can be tackled effectively by means of methods developed from graph theory, differential algebra and geometric approaches. These “structural methods” produce abstractions that fit a wide variety of applications by taking advantage of their intrinsic focus on the essential characteristics of dynamical systems, their geometric perspective and visual representation, and their algebraic formalization and ability to generate algorithmic frameworks to complement the theoretical treatment. The original work and latest achievements of the contributors, expanding on material presented at a workshop organized to coincide with the 2018 European Control Conference will assist systems and control scientists interested in developing theoretical and computational tools to solve analysis and synthesis problems involving complex dynamical systems. The contributions provide a comprehensive picture of available results along with a stimulating view of possible directions for future investigations in the field. Emphasis is placed on methods with solid computational background and on specific engineering applications so that readers from both theoretical and practical backgrounds will find this collection of use.

Structural Modeling of Metamaterials (Advanced Structured Materials #144)

by Igor S. Pavlov Vladimir I. Erofeev

This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.

Structural Optimization with Uncertainties

by Pekka Neittaanmäki N. V. Banichuk

This monograph is devoted to the exposition of new ways of formulating problems of structural optimization with incomplete information and techniques of solution. Research results concerning the optimum shape and structural properties of the bodies subjected to external loadings are recapitulated. Problems of optimal design with incomplete information, accounting for the interaction between the structure and its environment, properties of materials, existence of initial damages and damage accumulation are studied. This volume treats overcoming the corresponding mathematical difficulties caused by raising local functionals. Most of the book is devoted to the minimax approach using worst case scenarios, i.e. the so-called guaranteed approach. However, the probabilistic approach, that does not guarantee the result, is also described in the monograph, because it gives more "optimistic" results. Also, the mixed probabilistic guaranteed approach is discussed and applied for the solution of structural optimization problems with uncertainties.

Structural Performance of Masonry Elements: Mortar Coating Layers Influence (SpringerBriefs in Applied Sciences and Technology)

by Ana Sofia Guimarães António C. Azevedo Romilde A. Oliveira J. M. Delgado Fernando A.N. Silva Carlos W.A.P. Sobrinho

This book discusses the main mechanical features of masonry buildings and the peculiarities that affect their structural behaviour. It also examines technical information regarding accidents that have occurred in recent years in the Metropolitan Region of Recife, along with the historical records of these events, followed by indications of the causes for the collapse. The book offers extensive experimental results that make it possible to identify the contribution of several mortar rendering layers to the load capacity of the tested specimens. Lastly, it explores the factors that influenced the load capacity of the tested specimens.

Structural Proteomics

by Mitchell Guss Bostjan Kobe Thomas Huber

The objective of this volume is to provide readers with a current view of all aspects of the 'pipeline' that takes protein targets to structures and how these have been optimised. This volume includes chapters describing, in-depth, the individual steps in the Structural Genomics pipeline, as well as less detailed overviews of individual Structural Genomics initiatives. It is the first book of protocols to cover techniques in a new and emerging field.

Structural Proteomics

by Raymond J. Owens

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins, notably integral membrane proteins and multi-protein complexes. Structural Proteomics: High-Throughput Methods, Second Edition begins by exploring the resources available for curation, annotation, and structure prediction in silico, and continues with methods for sample preparation of both proteins and crystals, as well as structural characterization techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and up-to-date, Structural Proteomics: High-Throughput Methods, Second Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.

Structural Proteomics: High-Throughput Methods (Methods in Molecular Biology #2305)

by Raymond J. Owens

This updated and expanded volume reflects the current state of the structural protein field with improved and refined protocols that have been applied to particularly challenging proteins. Beginning with a section on structural bioinformatics, the book continues with sections covering the challenge of producing high quality samples for structural studies, particularly mammalian membrane proteins and protein complexes, as well as protocols for structure determination, including the use of electrons in structural biology and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Structural Proteomics: High-Throughput Methods, Third Edition will aid researchers in expanding our knowledge of this vital and expansive area of protein science.Chapter 9 is available open access under a CC BY 4.0 license.

Structural Realism

by Dean Rickles Elaine Landry

Structural realism has rapidly gained in popularity in recent years, but it has splintered into many distinct denominations, often underpinned by diverse motivations. There is, no monolithic position known as 'structural realism,' but there is a general convergence on the idea that a central role is to be played by relational aspects over object-based aspects of ontology. What becomes of causality in a world without fundamental objects? In this book, the foremost authorities on structural realism attempt to answer this and related questions: 'what is structure?' and 'what is an object?' Also featured are the most recent advances in structural realism, including the intersection of mathematical structuralism and structural realism, and the latest treatments of laws and modality in the context of structural realism. The book will be of interest to philosophers of science, philosophers of physics, metaphysicians, and those interested in foundational aspects of science.

Structural Reliability and Time-Dependent Reliability (Springer Series in Reliability Engineering)

by Cao Wang

This book provides structural reliability and design students with fundamental knowledge in structural reliability, as well as an overview of the latest developments in the field of reliability engineering. It addresses the mathematical formulation of analytical tools for structural reliability assessment. This book offers an accessible introduction to structural reliability assessment and a solid foundation for problem-solving. It introduces the topic and background, before dealing with probability models for random variables. It then explores simulation techniques for single random variables, random vectors consisting of different variables, and stochastic processes. The book addresses analytical approaches for structural reliability assessment, including the reliability models for a single structure and those for multiple structures, as well as discussing the approaches for structural time-dependent reliability assessment in the presence of discrete and continuous load processes. This book delivers a timely and pedagogical textbook, including over 170 worked-through examples, detailed solutions, and analytical tools, making it of interest to a wide range of graduate students, researchers, and practitioners in the field of reliability engineering.

Structural Reliability in Civil Engineering

by Qian Ye Yong Bai Wei-Liang Jin

Structural Reliability in Civil Engineering gives essential insights into the complexities of uncertainty in engineered structures, along with practical examples and advanced methods, making it an invaluable resource for both theory and real-world application in your civil engineering projects. Uncertainties are associated with the design, evaluation, and dynamic analysis of engineered structures. Structural Reliability in Civil Engineering introduces a developmental overview and basic concepts of reliability theory, uncertainty analysis methods, reliability calculation methods, numerical simulation methods of reliability, system reliability analysis methods, time-varying structural reliability, load and load combination methods, the application of reliability in specifications, and the application of reliability theory in practical engineering. This book not only discusses reliability theory in civil structural engineering but also presents valuable examples to illustrate the application of reliability theory to practical questions and comprehensively elaborates on some theories related to reliability from a brand-new perspective.

Structural Safety and Ground Improvement on Bridge: Proceedings of 2024 8th International Conference on Civil Architecture and Structural Engineering (Sustainable Civil Infrastructures)

by Bingxiang Yuan Hüseyin Bilgin Qingzi Luo Zejun Han Xueqiang Yang

This book provides readers with the most advanced research on bridge engineering structures and high performance concrete applications in China. Bridges as an important part of transportation facilities, its structural design and safety has been more concerned about the content. Especially in modern times, because of the needs of human travel and urban development, the structure of the bridge has also seen many innovations. However, there are consequent concerns about structural safety and stability in whole-life use. China, as the country with the largest increase in bridge construction in recent years, has shown many famous bridge projects to the world. These include the Hong Kong-Zhuhai-Macao Bridge (HZMB), which spans Guangdong, Hong Kong and Macao, the Zhang Jinggao Yangtze River Bridge in Jiangsu province, a suspension bridge with a length of more than 2,000 meters, and the Beipanjiang Railway Cable-stayed Bridge, which has the highest vertical distance from the ground of 565 meters, to name a few. In the face of complex terrain and geological conditions, Chinese bridge engineers have conducted many researches and applied to various engineering cases to finalize the construction of various bridge projects. Therefore, Chinese engineers and scholars have accumulated a lot of construction experience and research results. And we believe that these experiences and results are valuable and effective for the world bridge engineering field. The book gathers selected papers in 2024 8th International Conference on Civil Architecture and Structural Engineering, focuses on structural safety and high-performance concrete in bridges. We hope to share with bridge engineers around the world the latest experiences in bridge construction and structural safety from China, as well as the research and exploration of the application of high-performance concrete in bridge stability.

Structural Science of Crystalline Polymers: Basic Concepts and Practices

by Kohji Tashiro

This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure–Property Relationship being the second volume by the same author.

Refine Search

Showing 67,576 through 67,600 of 84,695 results