Browse Results

Showing 67,751 through 67,775 of 76,134 results

Surface Active Agents: Historical Perspectives and Future Developments

by Guido Bognolo

The production and use of surface active agents have seen various evolutions over time, yet rarely, if ever, has this information been collated in one place. Covering all surfactant classes in a clear and concise style, from their properties and applications to an overview of the evolution of their production processes, this book is a comprehensive overview of the field. It is both a record of important documents and intellectual property as well as a springboard for possible future developments. Key features: Covers both man-made and natural surfactants Includes abundant references to production processes and developments of intellectual property Provides a complete background to the field of surface active agents today From producers and formulators of surface active agents to professors and students of raw materials, this book is appropriate for both academic courses and industry professionals.

Surface Active Monomers

by Mykola Borzenkov Orest Hevus

This brief includes information on the background of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

Surface Analysis and Techniques in Biology

by Vincent S. Smentkowski

This book summarizes the main surface analysis techniques that are being used to study biological specimens/systems. The compilation of chapters in this book highlight the benefits that surface analysis provides. The outer layer of bulk solid or liquid samples is referred to as the surface of the sample/material. At the surface, the composition, microstructure, phase, chemical bonding, electronic states, and/or texture is often different than that of the bulk material. The outer surface is where many material interactions/reactions take place. This is especially true biomaterials which may be fabricated into bio-devices and in turn implanted into tissues and organs. Surfaces of biomaterials (synthetic or modified natural materials) are of critical importance since the surface is typically the only part of the biomaterial/bio-device that comes in contact with the biological system. Analytical techniques are required to characterize the surface of biomaterials and quantify their impact in real-world biological systems. Surface analysis of biological materials started in the 1960's and the number of researchers working in this area have increased very rapidly since then, a number of advances have been made to standard surface analytical instrumentation, and a number of new instruments have been introduced.

Surface Analysis of Paper (Routledge Revivals)

by Terrance E. Conners Sujit Banerjee

First published in 1995, Surface Analysis of Paper examines surface analysis techniques from a paper industry perspective and places heavy emphasis on applications. Modern techniques, including ion mass spectrometry, infrared spectroscopy, and optical profilometry are reviewed in a straightforward manner. This new book provides details on widely used methods and instruments, and discusses how they can be used to attain, for example, contour maps of the microscopic constituents on paper surfaces and accurate analyses of the physical properties of paper.Organized into three sections, Surface Analysis of Paper provides thorough coverage of the physical characteristics of paper, and a clear picture of new and emerging analytical methods. Carefully chosen background material on fundamental concepts is included wherever such material assists in understanding the uses of analysis methods. Each chapter contains: An introduction A description of the technique A discussion of the type of information that can be obtained with the particular technique Practical examples to demonstrate the advantages of the technique

Surface and Colloid Chemistry in Advanced Ceramics Processing (Surfactant Science Ser. #51)

by Robert J. Pugh Lennart Bergström

Emphasizes the importance of surface and colloid chemistry in the manufacture of high-performance ceramics. Examines processing-property relationships, powderproductionandcharacte6zation,the dispersion properties of powders in liquids, the rheology of concentrated suspensions, and the surface and colloid chemistry aspects of the most widely used forming methods.

Surface and Groundwater Resources Development and Management in Semi-arid Region: Strategies and Solutions for Sustainable Water Management (Springer Hydrogeology)

by Chaitanya B. Pande Manish Kumar N. L. Kushwaha

This book explains the challenges for efficient sustainable surface and groundwater development and management with the focus on India and other countries, providing a stable output presentation by using machine learning data mining methods, and modeling. It is a combination of machine learning, modeling, google earth engine, climate data modeling, remote sensing and GIS techniques, surface water modeling, AHP modeling, groundwater quality analysis, aquifer mapping, land use and land cover analysis, forecasting of water and rainfall and so on, its use to sustainable development, planning, and management of groundwater purposes in India and other countries. The main purpose of this book will develop better outlines for the development of surface and groundwater and management in the semi-arid region climate, which supports the Sustainable Development Goals (SDGs) in India, especially on sustainable surface water and groundwater resources management. This book provides a multidisciplinary overview for the faculty members, administrators scientists, policymakers, social science, and professionals involved in the various aspects of sustainable groundwater development, planning, and management.

Surface and Interfacial Forces

by Hans-Jürgen Butt Michael Kappl

A general introduction to surface and interfacial forces, perfectly combining theoretical concepts, experimental techniques and practical applications. In this completely updated edition all the chapters have been thoroughly revised and extended to cover new developments and approaches with around 15% new content. A large part of the book is devoted to surface forces between solid surfaces in liquid media, and while a basic knowledge of colloid and interface science is helpful, it is not essential since all important concepts are explained and the theoretical concepts can be understood with an intermediate knowledge of mathematics. A number of exercises with solutions and the end-of-chapter summaries of the most important equations, facts and phenomena serve as additional tools to strengthen the acquired knowledge and allow for self-study. The result is a readily accessible text that helps to foster an understanding of the intricacies of this highly relevant topic.

Surface and Interfacial Tension: Measurement, Theory, and Applications (Surfactant Science Ser. #Vol. 119)

by Stanley Hartland

This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and t

Surface-Based Remote Sensing of the Atmospheric Boundary Layer

by Stefan Emeis

The book presents a comprehensive overview of the current state-of-the-art in the atmospheric boundary layer (ABL) research. It focuses on experimental ABL research, while most of the books on ABL discuss it from a theoretical or fluid dynamics point of view. Experimental ABL research has been made so far by surface-based in-situ experimentation (tower measurements up to a few hundred meters, surface energy balance measurements, short aircraft experiments, short experiments with tethered balloons, constant-level balloons, evaluation of radiosonde data). Surface flux measurements are also discussed in the book. Although the surface fluxes are one of the main driving factors for the daily variation of the ABL, an ABL description is only complete if its vertical structure is analyzed and determined. Satellite information is available covering large areas, but it has only limited temporal resolution and lacks sufficient vertical resolution. Therefore, surface-based remote sensing is a large challenge to enlarge the database for ABL studies, as it offers nearly continuous and vertically highly resolved information for specific sites of interest. Considerable progress has been made in the recent years in studying of ground-based remote sensing of the ABL. The book discusses such new subjects as micro-rain radars and the use of ceilometers for ABL profiling, modern small wind lidars for wind energy applications, ABL flux profile measurements, RASS techniques, and mixing-layer height determination.

Surface Characteristics of Fibers and Textiles: Part Ii: (Fiber Science Ser. #7)

by M. J. Schick

The extraordinary growth in the production and use of man-made fibers over the past fewdecades has focused attention on the surface properties of fibers and textiles. This volumecombines surface science and technology in its presentation of the substantial progressthat has been made in the technology related to the surface characteristics of natural,synthetic, and glass fibers and textiles.Adopting an interdisciplinary approach , the coverage places emphasis upon the wetting,soiling, staining, frictional, and adhesive properties of fibers and fabrics, as well asphenomena related to these properties. The book offers critical reviews which describeexperimental facts, theories, and processes. Symbols are clearly defined in each chapter.Among the subjects covered are the surface properties of glass fibers, soil release, stainand water repellance, friction of fabrics, bonding of nonwovens, and the wetting of fibers.Surface Characteristics of Fibers and Textiles, Part II is an outstanding textbook forcourses dealing with surface chemistry, the mechanical properties of textiles, textiletechnology, and polymer chemistry . It is also a valuable reference book designed to makecurrent knowledge on these subjects accessible to industrial and academic researchers.

Surface Chemistry and Geochemistry of Hydraulic Fracturing

by K. S. Birdi

Unique in focus, Surface Chemistry and Geochemistry of Hydraulic Fracturing examines the surface chemistry and phenomena in the hydrofracking process. Under great scrutiny as of late, the physico-chemical properties of hydrofracking are fully detailed and explained. Topics include the adsorption-desorption of gas on the shale reservoir surface and relevant waste-water treatment dependent on various surface chemistry principles. The aim of this book is to help engineers and research scientists recognize the basic surface chemistry principles related to this subject. Written by a long-time expert in the field, this book presents an unbiased account of the hard science and engineering involved in a resource that is gaining growing attention within the community.

Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

by Cheng-Meng Chen

This PhD thesis presents the latest findings on the tunable surface chemistry of graphene/graphene oxide by systematically investigating the tuning of oxygen and nitrogen containing functional groups using an innovative carbonization and ammonia treatment. In addition, novel macroscopic assemblies or hybrids of graphene were produced, laying the theoretical foundation for developing graphene-based energy storage devices. This work will be of interest to university researchers, R&D engineers and graduate students working with carbon materials, energy storage and nanotechnology.

Surface Chemistry of Aqueous Corrosion Processes

by E. Mccafferty

This SpringerBrief utilizes a surface chemistry/physical chemistry approach toward the study of aqueous corrosion processes. The book starts with a timely and in-depth review of Acid-Base Properties of Surface Oxide Films. Acid-base properties are significant in various surface phenomena such as general and localized corrosion, corrosion inhibition by organic molecules, and the adhesion of organic polymers to oxide-covered metals. This review also discusses the relationship between the two measures of surface charge, the isoelectric point of the oxide film and the potential of zero charge of the oxide-covered metal. Other topics included are capillarity and corrosion, corrosion inhibition, passivity of Fe-Cr and Fe-Cr-Ni alloys, the uptake of chloride Ions and the pitting of aluminum, and the formation of water films on the iron oxide surface.

Surface Chemistry of Carbon Capture: Climate Change Aspects

by K. S. Birdi

Surface Chemistry of Carbon Capture: Climate Change Aspects provides comprehensive and up-to-date literature on carbon capture and storage (CCS) technology and delineates the surface chemistry of this process. Mankind is dependent on energy from gas, oil, coal, atomic energy, and various other sources. In all fossil fuel combustion processes, carbon dioxide (CO2) is produced (ca. 25 Gt/year). In the past few decades, we have observed a constant increase in CO2 content in the air (currently ca. 400 ppm [0.04%]). This book discusses the technology related to carbon (i.e., CO2) capture and sequestration (CCS) from fossil fuel energy plants, which is considered an important means of CO2 control. It also covers the adsorption/absorption processes of CO2 on solids and similar procedures to help address growing climate change concerns.

Surface Chemistry of Surfactants and Polymers

by Bengt Kronberg Krister Holmberg Bjorn Lindman

This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.

Surface Complexation Modeling: Gibbsite

by David A. Dzombak Athanasios K. Karamalidis

This book provides a description of the generalized two layer surface complexation model, data treatment procedures, and thermodynamic constants for sorption of metal cations and anions on gibbsite, the most common form of aluminum oxide found in nature and one of the most abundant minerals in soils, sediments, and natural waters. The book provides a synopsis of aluminum oxide forms and a clearly defined nomenclature. Compilations of available data for sorption of metal cations and anions on gibbsite are presented, and the results of surface complexation model fitting of these data are given. The consistency of the thermodynamic surface complexation constants extracted from the data is examined through development of linear free energy relationships which are also used to predict thermodynamic constants for ions for which insufficient data are available to extract constants. The book concludes with a comparison of constants extracted from data for sorption on gibbsite with those determined previously for hydrous ferric oxide (HFO), hydrous manganese oxide (HMO), and goethite.The overall objective of this book is the development and presentation of an internally consistent thermodynamic database for sorption of inorganic cations and anions on gibbsite, an abundant and reactive mineral in soils, sediments, and aquatic systems. Its surface has a high affinity for sorption of metal cations and anions, including radionuclides. The gibbsite database will enable simulation and prediction of the influence of sorption on the fate of these chemical species in natural systems and treatment processes in which aluminum oxides are abundant. It thus will help to advance the practical application of surface complexation modeling.

Surface Defects in Wide-Bandgap LiF, SiO2, and ZnO Crystals: Experiments and Simulations (SpringerBriefs in Materials)

by Utkirjon Sharopov

This book deals with surface defects in wide-bandgap crystals of lithium fluoride, silicon dioxide, and zinc oxide. Encompassing topics such as radiation-induced amorphization, crystallization, and various microstructural developments arising from defect production and annealing, the book delves into controlled modifications of physical and chemical properties, micro and nano-structuring of surfaces, and the creation and behavior of structures far from thermal equilibrium, including supersaturated solid solutions, ion tracks, and surfaces treated with electron- and high-intensity ion beams. Beyond its relevance to the academic community, this monograph serves as a valuable resource for design and installation organizations, offering insights for specialists involved in the development of modern, new, and energy-efficient innovative materials. The applicability extends to traditional silicon energy and semiconductor electronics, providing practical knowledge for professionals engaged in these fields. Additionally, the work is of significance to a broad spectrum of specialists and managers in various organizations involved in the development of lithium-ion batteries for energy storage systems, especially those employing cutting-edge high-performance materials. As a comprehensive reference in materials science, this monograph caters to a diverse audience engaged in the ongoing advancements and applications within this dynamic field. It is suitable for scientific and engineering professionals, as well as researchers specializing in materials science, physics, semiconductors, photovoltaics, defects engineering, laser technology, solid-state physics, and beam-enhanced synthesis and modification of materials.

Surface Diffusion: Metals, Metal Atoms, and Clusters

by Grażyna Antczak Gert Ehrlich

For the first time, this book unites the theory, experimental techniques and computational tools used to describe the diffusion of atoms, molecules and nanoparticles across metal surfaces. Starting with an outline of the formalism that describes diffusion on surfaces, the authors guide the reader through the principles of atomic movement, before moving on to diffusion under special circumstances, such as the presence of defects or foreign species. With an initial focus on the behaviour of single entities on a surface, later chapters address the movement of clusters of atoms and the interactions between adatoms. While there is a special emphasis on experimental work, attention is paid to the increasingly valuable contributions theoretical work has made in this field. This book has wide interdisciplinary appeal and is ideal for researchers in solid state physics, chemistry as well as materials science, and engineering.

Surface Effects in Solid Mechanics

by Holm Altenbach Nikita F Morozov

This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.

Surface Electromagnetics: With Applications in Antenna, Microwave, and Optical Engineering

by Fan Yang Yahya Rahmat-Samii

Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.

Surface Electromyography: Physiology, Engineering, and Applications

by Roberto Merletti Dario Farina

Reflects on developments in noninvasive electromyography, and includes advances and applications in signal detection, processing and interpretation. Addresses EMG imaging technology together with the issue of decomposition of surface EMG. Includes advanced single and multi-channel techniques for information extraction from surface EMG signals. Presents the analysis and information extraction of surface EMG at various scales, from motor units to the concept of muscle synergies.

Surface Electron Cyclotron Waves in Plasmas (Springer Series on Atomic, Optical, and Plasma Physics #107)

by Manfred Thumm Igor Girka Volodymyr Girka

This book is the first of its kind devoted to surface waves propagating across an external static magnetic field at harmonics of the electron cyclotron frequency. Based on comprehensive theoretical studies carried out over the course of about forty years, it presents unique material on various characteristics of these transverse waves, namely, dispersion properties and their dependence on numerous design peculiarities of plasma waveguides; damping due to interaction with the plasma surface (the kinetic channel) and collisions between plasma particles (the Ohmic channel); interaction with flows of charged particles moving above the plasma surface; parametric excitation due to the effect of an external radiofrequency field; and their power transfer for sustaining gas discharges. Clarifying numerous complicated mathematical issues it is a valuable resource for postgraduate students and experts in plasma physics, electromagnetic waves, and the kinetic theory of plasmas.

Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices

by Buddhadev Purohit Pranjal Chandra

This book chronicles the role of advanced nanomaterials and surface engineering technologies in the development of point-of-care biosensors for health and environmental monitoring. All aspects of nanomaterial synthesis and characterization, functionalization methods, sensing surface engineering, signal amplification strategies, use of innovative technologies to enhance sensor efficiency and performances, and innovative applications of nanobiosensors to tackle real-life problems are discussed in this book with a focus on optical and electrochemical based sensing. It also covers the detection of infectious diseases and various disease biomarkers, smartphone-based biosensing, and portable diagnostics module developments with a discussion on the working mechanisms of these devices in various domains. The book also illustrates the recent trends in biosensing, and an overview of the challenges and probable solutions for the translation of biosensors from laboratory prototypes to commercial success. ​

Surface Engineering for Enhanced Performance against Wear

by Manish Roy

Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

Surface Engineering of Biomaterials: Synthesis and Processing Techniques (Emerging Materials and Technologies)

by Ajit Behera Debasis Nayak Biswajit Kumar Swain

Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.

Refine Search

Showing 67,751 through 67,775 of 76,134 results