Browse Results

Showing 72,876 through 72,900 of 83,330 results

Stem Cell Therapy for Autoimmune Disease

by Richard K. Burt

Stem cell transplantation may be complicated by treatment-related mortality and like the immune system that it regenerates has equal potential to either create and preserve or destroy. The dual nature that defines stem cells is differentiation that ultimately leads to death and self-renewal, which leads to immortality. What types of stem cells are there? How are they collected? What are their attributes and characteristics? This textbook devotes many chapters to familiarize the reader with the basic science, clinical aspects, and new questions being raised in the field of stem cell biology. Blood stem cells for tolerance and tissue regeneration are a rapidly developing research and clinical field that is being applied to autoimmune diseases. In clinical trials, autologous hematopoietic (blood) stem cells are being used to reduce the cytopenic interval following intense immune suppressive transplant regimens. While as yet not delineated, some possible mechanisms and pathways leading to tolerance after hematopoietic stem cell transplantation are suggested in these chapters. Tissue regeneration from blood stem cells is also suggested by animal experiments on stem cell plasticity or metamoirosis (i.e., change in fate) as described within this textbook. Ongoing early clinical trials on tissue regeneration from blood stem cells are described in the chapter on stem cell therapy for cardiac and peripheral vascular disease. Whether autologous hematopoietic stem cells, through the process of mobilization and reinfusion, may be manipulated to contribute to tissue repair in autoimmune diseases is a future area for translational research.

Stem Cell Therapy for Diabetes

by Shimon Efrat

Stem Cell Therapy for Diabetes, one of the latest installments of the Stem Cell Biology and Regenerative Medicine series, reviews the three main approaches for generation of sufficient numbers of insulin-producing cells for restoration of an adequate beta-cell mass: beta-cell expansion, stem-cell differentiation, and nuclear reprogramming. Adeptly collecting the research of the leading scientists in the field, Stem Cell Therapy for Diabetes compares the merits of employing autologous versus banked allogeneic cell sources for generation of surrogate beta cells, and addresses tissue engineering and ways for cell protection from recurring autoimmunity and graft rejection. Stem Cell Therapy for Diabetes provides essential reading for those especially interested in tracking the progress in applying of one of the most exciting new developments in bio-medicine towards a cure for diabetes.

Stem Cell Transcriptional Networks: Methods and Protocols (Methods in Molecular Biology #2117)

by Benjamin L. Kidder

This second edition provides techniques used to study of the underlying transcriptional programs of stem cells that promote self-renewal and differentiation. Chapters detail next-generation sequencing technologies, data analysis, protocols on analysis and visualization of single-cell RNA-Seq data, analysis of 3D chromatin architecture, interpretation of large-scale interaction networks, transcriptional networks in embryonic and adult stem cells, derivation of stem cells, and transcriptional programs that promote reprogramming, transdifferentiation, and cancer formation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Stem Cell Transcriptional Network: Methods and Protocols, Second Edition aims to provide a key resource for biologists seeking to interrogate these vital networks.

Stem Cell Transplantation for Autoimmune Diseases and Inflammation (Stem Cells in Clinical Applications)

by Phuc Van Pham

This book introduces many new technologies and clinical applications of hematopoietic stem cells and mesenchymal stem cell transplantation for the treatment of autoimmune diseases and inflammatory diseases. Presented in two parts, Part 1 focuses on stem cell therapies for autoimmune disease treatment; Part 2 focuses on stem cell therapies and their application in the treatment of common inflammatory diseases, including chronic knee osteoarthritis, chronic obstructive pulmonary disease, liver cirrhosis, Crohn's Disease, Multiple Sclerosis, and more. This book is an essential source for all advanced students and researchers involved with these diseases, stem cells, or both. Stem Cell Transplantation for Autoimmune Diseases and Inflammation and the other books in the Stem Cells in Clinical Applications series are invaluable to scientists, researchers, advanced students and clinicians working in stem cells, regenerative medicine, or tissue engineering as well as cancer or genetics research.

Stem Cell Wars

by Eve Herold George Daley

Americans have become the victims of misinformation about stem cell research. Over the last few years, the stem cell debate has been intensely political, religious, and confusing to many people. Now, Eve Herold explains what this science is all about, who is for and against it, and why it must go forward. She pulls together fascinating stories to highlight every aspect of this multifaceted field. She exposes the politics of stem cell research and demonstrates how the outcome of the debate could ultimately affect all of us. Packed with real-life stories of the people caught up in this groundbreaking struggle, Stem Cell Wars cuts through the noise and sets the standard for future debate.

Stem Cells

by Rob Burgess

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem cells in drug discovery and therapeutic applications in spinal cord injury, brain damage, neurological and autoimmune disorders, among others. Written by a leader in the field, Stem Cells: A Short Course appeals to both students and instructors alike, appealing to academic enthusiasm for stem cell research and applications.

Stem Cells: Biology and Therapeutics

by Suchandra Chowdhury Shyamasree Ghosh

Stem cells hold great promise for cell therapy, tissue engineering, regenerative medicine and pharmaceutical and biotechnological applications. This book highlights the potency of stem cells, their property of self-renewal and their ability to differentiate into different cell lineages. It further describes the different markers to identify stem cells, sources, methods of isolation, culture including 2D, 3D and beyond and their cryopreservation. This is among the first books to discuss glycosylation and sialylation in stem cells. Chapters describe application of stem cells in regenerative medicine and therapy, and highlight their application in cancer therapy and spinal cord injury. The book talks about the important patents on stem cells. The book also highlights the plant stem cells, discussing their pluoripotent nature, role in organ regeneration after injury, specific stem cell niches, that signals to block differentiation studied in plants shoot, root, and vascular meristems, differentiation of plant stem cell, transcriptional regulation and epigenetic modification of plant stem cells. This book is exciting and cutting edge. It will be of great interest to doctors, students and researchers in the field of regenerative medicine, cancer , biotechnology and plant sciences.

Stem Cells: Biology and Application

by Mary Clarke Jonathan Frampton

Stem cell science, encompassing basic biology to practical application, is both vast and diverse. A full appreciation of it requires an understanding of cell and molecular biology, tissue structure and physiology, the practicalities of tissue engineering and bioprocessing, and the pathways to clinical implementation—including the ethical and regulatory imperatives that our society requires us to address. Expectation and debate have been driven by the allure of regenerative medicine using stem cells as a source of replacements for damaged or aged tissues. The potential of stem cell application goes far beyond this. Highly innovative uses of stem cells are emerging as possible therapies for cancers, treating acute damage in conditions such as stroke and myocardial infarction, and resolving a whole range of diseases. Stem Cells: Biology and Application presents the basic concepts underlying the fast-moving science of stem cell biology. This textbook is written for an advanced stem cell biology course. The target audience includes senior undergraduates, first year graduate students, and practitioners in molecular biology, biology, and biomedical engineering. Stem Cells provides a comprehensive understanding of these unique cells, highlighting key areas of research, associated controversies, case studies, technologies, and pioneers in the field.

Stem Cells (Elements in the Philosophy of Biology)

by Melinda Bonnie Fagan

What is a stem cell? The answer is seemingly obvious: a cell that is also a stem, or point of origin, for something else. Upon closer examination, however, this combination of ideas leads directly to fundamental questions about biological development. A cell is a basic category of living thing; a fundamental 'unit of life.' A stem is a site of growth; an active source that supports or gives rise to something else. Both concepts are deeply rooted in biological thought, with rich and complex histories. The idea of a stem cell unites them, but the union is neither simple nor straightforward. This book traces the origins of the stem cell concept, its use in stem cell research today, and implications of the idea for stem cell experiments, their concrete results, and hoped-for clinical advances.

Stem Cells: Latest Advances

by Khawaja H. Haider

In this volume, the contributing authors from top labs involved in stem cell theranostics share the latest advances in the field of stem cell research. The book covers many aspects of stem cell-based therapy and the progress made toward stem cell therapy for liver, ocular, and cardiovascular diseases as well as cancer. This volume serves as a continuation of Prof. Khawaja Husnain Haider’s previously edited books pertaining to stem cells-based therapnostics. This is an ideal book for researchers involved in drug development as well as regenerative medicine and stem cell-based therapy. The secondary audience includes graduate and postgraduate medical students, doctors, cellular pharmacology, drug industry, and researchers involved in using stem cells as ex-vivo disease models for drug development.

Stem Cells

by Robert A. Meyers

This third in the Current Topics in Molecular Cell Biology and Molecular Medicine Series contains a careful selection of new and updated, high-quality articles from the well-known Meyer's Encyclopedia, describing new perspectives in stem cell research. The 26 chapters are divided into four sections: Basic Biology, Stem Cells and Disease, Stem Cell Therapy Approaches, and Laboratory Methods, with the authors chosen from among the leaders in their respective fields. This volume represents an essential guide for students and researchers seeking an overview of the field.

Stem Cells: Biology and Engineering (Advances in Experimental Medicine and Biology #1083)

by Phuc Van Pham

This new series, based on a bi-annual conference and its topics, represents a major contribution to the emerging science of cancer research and regenerative medicine. Each volume brings together some of the most pre-eminent scientists working on cancer biology, cancer treatment, cancer diagnosis, cancer prevention and regenerative medicine to share information on currently ongoing work which will help shape future therapies. These volumes are invaluable resources not only for already active researchers or clinicians but also for those entering these fields, plus those in industry. Stem Cells: Biology and Engineering is a proceedings volume which reflects papers presented at the Innovations in Regenerative Medicine and Cancer Research conference; taken with its companion volume Tissue Engineering and Regenerative Medicine it provides a complete overview of the papers from that meeting of international experts.

Stem Cells: Therapeutic Applications (Advances in Experimental Medicine and Biology #1201)

by Mariusz Z. Ratajczak

Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.

Stem Cells and Aging: Methods and Protocols (Methods in Molecular Biology #2045)

by Kursad Turksen

This fully updated book collects protocols that reflect current investigations into how stem cell populations change during organismal aging. These methodologies are well-established and described in easy to follow fashion so as to be valuable for not only experts but novices in the ever-developing stem cell field. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Stem Cells and Aging: Methods and Protocols, Second Edition serves as an ideal guide for all researchers working in this very active area of study.

Stem Cells and Aging

by Kursad Turksen

Over time, it has become clear that changes in stem cells do occur during aging, not only in their number but also in their relationship to their microenvironment and their functionality as reflected in changes to their metabolome. Stem Cells and Aging: Methods and Protocols brings together chapters from expert contributors with protocols critical for exploring the biology of stem cell aging, all of which is key for understanding these age-related stem cell changes at a basic biology level and at the level of their impacts for regenerative medicine. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy to use, Stem Cells and Aging: Methods and Protocols serves as an ideal reference to guide investigators toward further valuable answers to the problems of our aging population.

Stem Cells and Cancer

by Sadhan Majumder

Cancer is a primary cause of human mortality worldwide. Despite decades of basic and clinical research, the outcome for most cancer patients is still dismal. Some stumbling blocks to developing effective therapy include the heterogeneity of cancer tissues, the lack of knowledge about the critical molecular mechanisms in cancer tissues (which are typically aberrant compared with mechanisms in normal tissue), and the lack of good mechanism-based therapeutic approaches. The recent findings that most cancers contain a small fraction of self-renewing, differentiation-blocked stem cell-like cells (cancer stem cells) and that it is these cells--and not the major bulk of the tissue--that are the root cause for cancer initiation and metastasis have also highlighted the need to change our approach to cancer therapy. The objectives of this book, therefore, would be to impart up-to-date information about the role of stem cells in the development of normal and cancerous tissue, the mechanisms that differentiate normal from cancerous functions, and the use of these findings in developing mechanism-based therapies.

Stem Cells and Good Manufacturing Practices

by Kursad Turksen

This volume collects a series of protocols describing the kinds of infrastructures, training, and standard operating procedures currently available to actualize the potential of stem cells for regenerative therapies. Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations pulls together key GMP techniques from laboratories around the world. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Inclusive and authoritative, Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations will be an invaluable resource to both basic and clinical practitioners in stem cell biology.

Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations (Methods in Molecular Biology #2286)

by Kursad Turksen

This detailed book explores the utilization and delivery of stem cells for therapeutic purposes in patients in the clinic and the tightly controlled Good Manufacturing Practices (GMP) that make these powerful techniques possible. Fully updated and expanded from the first edition, this collection features a new set of protocols to arm stem cell biologists with protocols that are currently being used in a number of well-established facilities around the world. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up to date, Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations, Second Edition serves as an ideal guide for researchers aiming to drive continued improvements to GMP and accelerate new stem cell treatments for patients in need.

Stem Cells and Human Diseases

by Rakesh K. Srivastava Sharmila Shankar

The main objective of this book is to provide a comprehensive review on stem cells and their role in tissue regeneration, homeostasis and therapy. In addition, the role of cancer stem cells in cancer initiation, progression and drug resistance are discussed. The cell signaling pathways and microRNA regulating stem cell self-renewal, tissue homeostasis and drug resistance are also mentioned. Overall, these reviews will provide a new understanding of the influence of stem cells in tissue regeneration, disease regulation, therapy and drug resistance in several human diseases.

Stem Cells and Lineage Commitment: Methods and Protocols (Methods in Molecular Biology #2736)

by Kursad Turksen

This detailed volume explores a variety of techniques used to study lineage commitment in stem cells. Further elucidation of the process that stem cells undergo on their way to becoming more specified cell types is vital for a more complete understanding of cell biology and overall physiology. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Stem Cells and Lineage Commitment: Methods and Protocols serves as an ideal guide for experts and novices in the field of stem cell biology.

Stem Cells and Prostate Cancer

by Scott D. Cramer

Recent evidence demonstrates that normal prostate tissue contains stem cells. There is also accumulating evidence that prostate cancer contains a population of cells with stem cell-like characteristics referred to as cancer stem cells, or tumor initiating cells. Both the normal prostate stem cell and cancer stem cell populations have important implications for the generation, therapeutic targeting, and prevention of prostate cancer. The purpose of this book is to explore the role of stem cells in prostate cancer, which is becoming an increasingly hot trend in cancer research.

Stem Cells and Revascularization Therapies

by Hyunjoon Kong Andrew J. Putnam Lawrence B. Schook

In the last few decades, significant advancements in the biology and engineering of stem cells have enabled progress in their clinical application to revascularization therapies. Some strategies involve the mobilization of endogenous stem cell populations, and others employ cell transplantation. However, both techniques have benefited from multidis

Stem Cells and the Future of Regenerative Medicine

by National Research Council

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell research—specifically embryonic stem cell research—into the political crosshairs. President Bush’s watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.

Stem Cells and Tissue Engineering

by Bela Balint Mirjana Pavlovic

Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more and more answers every day. Stem Cells and Tissue Engineering is a concise review on the functional, phenotypic, regenerative, transplantational and curative aspects of a stem cell's entity. It is critical and encouraging at the same time, providing truthful and appropriate samples from the practice and research that can lead toward optimal use of this immense source of adjuvant and curative therapy in human pathology. Written by a clinician and a researcher, who are currently teaching what they are doing, it is recommended as a teaching tool along with an original textbook.

Stem Cells and Tissue Repair: Methods and Protocols (Methods in Molecular Biology #2155)

by Chrissa Kioussi

This volume looks at a collection of stem cell and regenerative techniques used by both novice and expert scientists. Chapters cover topics such as tissue repaired by expansion and reprogramming; induced pluripotent stem cells driven in neuronal or vascular differentiation; using mesenchymal stem cells to derive skeletal muscle, osteoblasts, and spermatogonial cells; and the technique of monitoring the development of sub-organ microenvironments in the developing pancreas. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and thorough, Stem Cells and Tissue Repair: Methods and Protocols, Second Edition is a valuable resource that provides readers with the latest descriptions and references for exploring this vast field in regenerative medicine.

Refine Search

Showing 72,876 through 72,900 of 83,330 results