- Table View
- List View
Wave Propagation in Nanostructures
by Srinivasan Gopalakrishnan Saggam NarendarWave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and Graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behavior in these low dimensional structures.
Wave Propagation in Solid and Porous Half-Space Media
by Hamid R. Hamidzadeh Liming Dai Reza N. JazarThis book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms (Mechanical Engineering Series)
by James F. DoyleThis third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and discretized structures. Examples for phononic materials meta-materials as well as genuine atomic systems are given.
Wave-Swept Shore: The Rigors of Life on a Rocky Coast
by Mimi KoehlThis book tells the story of one stretch along the Pacific coast of North America--introducing the mussels, limpets, crabs, grasses, starfish, kelp, and other animals and plants that live there, and explaining how they function and flourish in an environment of waves, sand, and rocks.
Wave Turbulence
by Sergey NazarenkoWave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as "frozen" turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.
Wave, Wind, and Current Power Generation
by Victor M. Lyatkher Ziaur RahmanWAVE AND CURRENT POWER GENERATION Written by two well-known and respected engineers, this exciting new volume is the most up-to-date and comprehensive text on power generation from waves and water currents available today to engineers, scientists, and students, also covering the latest advances in wind power generation. As the world turns further and further away from fossil fuel energy sources, unconventional and renewable sources of energy, such as power generation from water sources and wind energy, are becoming more and more important. Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water. Written by two experts in the field, it also covers wind energy and how it can be more efficiently harnessed. This groundbreaking new volume deals with modern problems of using wind energy, namely, jet currents in the atmosphere and the energy of water flows of rivers, ocean and sea currents, including those caused by tides. Wind and water-based energy sources form an essential part of the renewable energy solution. The engineering measures discussed in this book prove, for example, that by reducing the rate of dissipation of atmospheric surface low-level currents by only one percent, it is possible to provide all of humanity with energy at rates twice the per capita consumption of the wealthiest countries. Whether for the veteran engineer or the engineering student, this book is a must-have for any library. Wave, Wind and Current Power Generation: Is one of the first books available on wave and current power generation containing information for engineers to use for solving day-to-day problems Assists engineers in rapidly analyzing problems and finding effective design methods and select mechanical specifications Provides methods and proven fundamentals of process design for practical application Helps achieve optimum operations and process conditions and shows how to translate design fundamentals into mechanical equipment specifications Covers not just wave and current power generation, but also has a section on wind power generation and a comprehensive overview of renewable energy in the world today
Waveform Analysis of Sound
by Mikio TohyamaWhat is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduate students who are interested in the mathematical representation of signals and the applications of Fourier analysis. The book can be described as being practically self-contained but does assume readers are familiar with introductory topics in discrete signal processing, as in the discrete Fourier transform. Hence this book might be also usable as a textbook in graduate courses in applied mathematics on topics such as complex functions. Almost all scientific phenomena are sensed as waves propagating in some space. Over the years, waveform analysis has therefore been one of the resilient academic areas of study and still is seen as fertile ground for development. In particular, waveform analysis based on the theory of linear systems would be a good example where a physical interpretation can be given to the mathematical theory of complex functions in terms of magnitude, angle, poles, and zeros of complex functions. For readers who are interested in the physical aspects of sound and vibration data or elementary formulation of wave equations and their solutions, the book Sound and Signals by M. Tohyama (Springer 2011) is recommended. It can serve as a complementary companion to this present volume or independently as a good reference.
Wavefront Shaping and Pupil Engineering (Springer Series in Optical Sciences #235)
by Jorge Ojeda-CastañedaThis book presents a simple, yet comprehensive, treatment of the basic principles and applications of novel phase masks and non-uniform optical windows under the increasingly popular umbrella term “pupil engineering.” It discusses current research topics in the areas of phase-space representations for engineering imaging devices with extended depth of field, as well as sparse optical sensing and emergent phenomena such as vortices and singularities, highlighting the heuristic applications of key concepts in novel models and their graphic representations. The book is appealing to anyone interested in robotic vision and is a valuable resource for upper-level students, teachers, scientists, and engineers in the field of image science, lasers, and digital image processing.
Wavefront Shaping for Biomedical Imaging (Advances in Microscopy and Microanalysis)
by Joel Kubby Sylvain Gigan Meng CuiLearn about the theory, techniques and applications of wavefront shaping in biomedical imaging using this unique text. With authoritative contributions from researchers who are defining the field, cutting-edge theory is combined with real-world practical examples, experimental data and the latest research trends to provide the first book-level treatment of the subject. It is suitable for both background reading and use in a course, with coverage of essential topics such as adaptive optical microscopy, deep tissue microscopy, time reversal and optical phase conjugation, and tomography. The latest images from the forefront of biomedical imaging are included, and full-colour versions are available in the eBook version. Researchers, practitioners and graduate students in optics, biophotonics, biomedical engineering, and biology who use biomedical imaging tools and are looking to advance their knowledge of the subject will find this an indispensable resource.
Waveguide Propagation of Nonlinear Waves: Impact of Inhomogeneity and Accompanying Effects (Springer Series on Atomic, Optical, and Plasma Physics #109)
by Sergey LebleThis book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions.Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
Wavelength Division Multiplexing
by Klaus Grobe Michael EiseltIn this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rates is given as well.Key features:Considers WDM from ULH backbone (big picture view) down to PON access (micro view). Includes all major telecom and datacom applications. Provides the relevant background for state-of-the-art and next-gen systems. Offers practical guidelines for system / link engineering.
Wavelet Analysis and Transient Signal Processing Applications for Power Systems
by Zhengyou HeAn original reference applying wavelet analysis to power systems engineering• Introduces a modern signal processing method called wavelet analysis, and more importantly, its applications to power system fault detection and protection• Concentrates on its application to the power system, offering great potential for fault detection and protection• Presents applications, examples, and case studies, together with the latest research findings• Provides a combination of the author’s tutorial notes from electrical engineering courses together with his own original research work, of interest to both industry and academia
Wavelet Based Approximation Schemes for Singular Integral Equations
by Madan Mohan Panja Birendra Nath MandalMany mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.
Wavelet Numerical Method and Its Applications in Nonlinear Problems (Engineering Applications of Computational Methods #6)
by You-He ZhouThis book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.
Wavelets: A Concise Guide
by Amir-Homayoon NajmiIntroduced nearly three decades ago as a variable resolution alternative to the Fourier transform, a wavelet is a short oscillatory waveform for analysis of transients. The discrete wavelet transform has remarkable multi-resolution and energy-compaction properties. Amir-Homayoon Najmi’s introduction to wavelet theory explains this mathematical concept clearly and succinctly. Wavelets are used in processing digital signals and imagery from myriad sources. They form the backbone of the JPEG2000 compression standard, and the Federal Bureau of Investigation uses biorthogonal wavelets to compress and store its vast database of fingerprints. Najmi provides the mathematics that demonstrate how wavelets work, describes how to construct them, and discusses their importance as a tool to investigate and process signals and imagery. He reviews key concepts such as frames, localizing transforms, orthogonal and biorthogonal bases, and multi-resolution. His examples include the Haar, the Shannon, and the Daubechies families of orthogonal and biorthogonal wavelets.Our capacity and need for collecting and transmitting digital data is increasing at an astonishing rate. So too is the importance of wavelets to anyone working with and analyzing digital data. Najmi’s primer will be an indispensable resource for those in computer science, the physical sciences, applied mathematics, and engineering who wish to obtain an in-depth understanding and working knowledge of this fascinating and evolving field.
Wavelets in Neuroscience (Springer Series in Synergetics)
by Alexander E. Hramov Alexey A. Koronovskii Valeri A. Makarov Vladimir A. Maksimenko Alexey N. Pavlov Evgenia SitnikovaThis book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings.This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics:• Detection of fEPSPs in multielectrode LFPs recordings.• Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control;• Analysis and Real-time Classification of Motor-related EEG Patterns;The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.
Wavelets in Neuroscience
by Alexander E. Hramov Alexey A. Koronovskii Valeri A. Makarov Alexey N. Pavlov Evgenia SitnikovaThis book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural networks (chapter 4). The features of time-frequency organization of EEG signals are then extensively discussed, from theory to practical applications (chapters 5 and 6). Lastly, the technical details of automatic diagnostics and processing of EEG signals using wavelets are examined (chapter 7). The book will be a useful resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in the corresponding areas.
Waves: Principles of Light, Electricity and Magnetism (Secrets of the Universe)
by Paul FleisherHave you ever wondered why a prism turns ordinary sunlight into a rainbow? Isaac Newton knew why. How can a magnet be used to generate electricity? Michael Faraday could have told you. Can you explain how a toaster toasts bread? In this book, author Paul Fleisher answers these and many more questions as he looks at the laws that describe how waves behave. Through simple experiments, detailed illustrations, and concepts that are easy to understand, readers are introduced to the basic principles of light, electricity, and magnetism in a fun, exciting way.
Waves (The MIT Press Essential Knowledge series)
by Fredric RaichlenA guide to ocean waves traces their evolution from wind-wave generation to coastal effects. Sitting on the beach on a sunny summer day, we enjoy the steady advance and retreat of the waves. In the water, enthusiastic waders jump and shriek with pleasure when a wave hits them. But where do these waves come from? How are they formed and why do they break on the shore? In Waves, Fredric Raichlen traces the evolution of waves, from their generation in the deep ocean to their effects on the coast. He explains, in a way that is readily understandable to nonscientists, both the science of waves themselves and the technology that can be used to protect us against their more extreme forms, including hurricanes and tsunamis.After offering a basic definition of waves and explaining the mechanics of wind-wave generation, Raichlen describes how waves travel, how they shoal (rise), how they break, and how they transform in other ways. He goes on to describe, among other things, the complicated sun-Earth-moon combinations that create astronomical tides (the high and low tides that occur daily and predictably); the effects of waves on the beach, including rip currents and beach erosion, and on harbors and shipping; and the building of breakwaters to protect harbors and bays. He discusses hurricanes, storm surges, and hurricane-generated waves. He offers a brief history of tsunamis, including Sumatra's in 2004 and Japan's in 2011, and explains the mechanisms that generate them (including earthquakes, landslides, and volcanoes).Waves can be little ripples that lap peacefully at the shore or monstrous tsunamis that destroy everything in their paths. Describing the science underlying this astonishing variety, Waves offers a different kind of beach reading.
Waves
by Fredric RaichlenSitting on the beach on a sunny summer day, we enjoy the steady advance and retreat of the waves. In the water, enthusiastic waders jump and shriek with pleasure when a wave hits them. But where do these waves come from? How are they formed and why do they break on the shore? In Waves, Fredric Raichlen traces the evolution of waves, from their generation in the deep ocean to their effects on the coast. He explains, in a way that is readily understandable to nonscientists, both the science of waves themselves and the technology that can be used to protect us against their more extreme forms, including hurricanes and tsunamis. After offering a basic definition of waves and explaining the mechanics of wind-wave generation, Raichlen describes how waves travel, how they shoal (rise), how they break, and how they transform in other ways. He goes on to describe, among other things, the complicated sun-Earth-moon combinations that create astronomical tides (the high and low tides that occur daily and predictably); the effects of waves on the beach, including rip currents and beach erosion, and on harbors and shipping; and the building of breakwaters to protect harbors and bays. He discusses hurricanes, storm surges, and hurricane-generated waves. He offers a brief history of tsunamis, including Sumatra's in 2004 and Japan's in 2011, and explains the mechanisms that generate them (including earthquakes, landslides, and volcanoes). Waves can be little ripples that lap peacefully at the shore or monstrous tsunamis that destroy everything in their paths. Describing the science underlying this astonishing variety, Waves offers a different kind of beach reading.
Waves and Compressible Flow
by Hilary Ockendon John R. OckendonNow in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, engineering, and other physical sciences. Reviews of the first edition: "This book . . . is an introduction to the theory of linear and nonlinear waves in fluids, including the theory of shock waves. . . . is extraordinarily accurate and free of misprints . . . . I enjoyed reading this book. . . . most attractive and enticing appearance, and I'm certain that many readers who browse through it will wish to buy a copy. The exercises . . . are excellent. . . . A beginner who worked through these exercises would not only enjoy himself or herself, but would rapidly acquire mastery of techniques used. . . in JFM and many other journals. . . " (C. J. Chapman, Journal of Fluid Mechanics, Vol. 521, 2004) "The book targets a readership of final year undergraduates and first year graduates in applied mathematics. In the reviewer's opinion, it is very well designed to catch the student's interest . . . while every chapter displays essential features in some important area of fluid dynamics. Additionally, students may practice by solving 91 exercises. This volume is mainly devoted to inviscid flows. . . . The book is very well written. " (Denis Serre, Mathematical Reviews, 2004)
Waves and Optics
by Harish ParthasarathyThis book covers all aspects of waves and optics ranging from one dimensional waves in a vibrating string, two dimensional waves in a vibrating membrane, both of which are transverse, three dimensional electromagneticwaves generated by radiating antennas and longitudinal sound/pressure waves in an air column. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Waves and Oscillations in Plasmas (Series in Plasma Physics)
by Hans L. PecseliWaves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America. Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more. Features: Presents a simple physical interpretation of basic problems is presented where possible Supplies a complete summary of classical papers and textbooks placed in the proper context Includes worked examples, exercises, and problems with general applicability