Browse Results

Showing 76,501 through 76,525 of 83,107 results

Thermodynamics and Synchronization in Open Quantum Systems (Springer Theses)

by Gonzalo Manzano Paule

This book explores some of the connections between dissipative and quantum effects from a theoretical point of view. It focuses on three main topics: the relation between synchronization and quantum correlations, the thermodynamical properties of fluctuations, and the performance of quantum thermal machines. Dissipation effects have a profound impact on the behavior and properties of quantum systems, and the unavoidable interaction with the surrounding environment, with which systems continuously exchange information, energy, angular momentum and matter, is ultimately responsible for decoherence phenomena and the emergence of classical behavior. However, there is a wide intermediate regime in which the interplay between dissipative and quantum effects gives rise to a plethora of rich and striking phenomena that has just started to be understood. In addition, the recent breakthrough techniques in controlling and manipulating quantum systems in the laboratory have made this phenomenology accessible in experiments and potentially applicable.

Thermodynamics: Basic Principles and Engineering Applications (Mechanical Engineering Series)

by Alan M. Whitman

This textbook is for a one semester introductory course in thermodynamics, primarily for use in a mechanical or aerospace engineering program, although it could also be used in an engineering science curriculum. The book contains a section on the geometry of curves and surfaces, in order to review those parts of calculus that are needed in thermodynamics for interpolation and in discussing thermodynamic equations of state of simple substances. It presents the First Law of Thermodynamics as an equation for the time rate of change of system energy, the same way that Newton’s Law of Motion, an equation for the time rate of change of system momentum, is presented in Dynamics. Moreover, this emphasis illustrates the importance of the equation to the study of heat transfer and fluid mechanics. New thermodynamic properties, such as internal energy and entropy, are introduced with a motivating discussion rather than by abstract postulation, and connection is made with kinetic theory. Thermodynamic properties of the vaporizable liquids needed for the solution of practical thermodynamic problems (e.g. water and various refrigerants) are presented in a unique tabular format that is both simple to understand and easy to use. All theoretical discussions throughout the book are accompanied by worked examples illustrating their use in practical devices. These examples of the solution of various kinds of thermodynamic problems are all structured in exactly the same way in order to make, as a result of the repetitions, the solution of new problems easier for students to follow, and ultimately, to produce themselves. Many additional problems are provided, half of them with answers, for students to do on their own.

Thermodynamics: Basic Principles and Engineering Applications (Mechanical Engineering Series)

by Alan M. Whitman

This new edition is designed for a one semester introductory course in thermodynamics, either in mechanical or aerospace engineering, or in an engineering science program. The book contains a section on the geometry of curves and surfaces, in order to review those parts of calculus that are needed in thermodynamics for discussing the thermodynamic equations of state of simple compressible substances, and their approximation by linear interpolation. It presents the First Law of Thermodynamics as an equation for the time rate of change of system energy, the same way that Newton’s Law of Motion, an equation for the time rate of change of system momentum, is presented in Dynamics, and presents the Second Law mathematically as a lower bound for the time rate of change of system entropy. Moreover, this emphasis illustrates the importance of thermodynamics to the study of heat transfer and fluid mechanics. These laws and the associated new thermodynamic properties, energy and entropy, are introduced with extended motivating discussions rather than as abstract postulates, and connections are made with kinetic theory. Thermodynamic properties of the vaporizable liquids- condensible gases needed for the solution of practical thermodynamic problems (e.g. water and a typical refrigerant) are presented in a unique tabular format that is both simple to understand and easy to use. All theoretical discussions throughout the book are accompanied by worked examples illustrating their use in practical devices. These examples of the solution of various kinds of thermodynamic problems are all structured in exactly the same way in order to make, as a result of the repetition, the solution of new problems easier for students to follow, and ultimately, to produce themselves. Many additional problems are provided, half of them with answers, for students to do on their own.

Thermodynamics, Diffusion and the Kirkendall Effect in Solids

by Aloke Paul Tomi Laurila Vesa Vuorinen Sergiy V. Divinski

In this book basic and some more advanced thermodynamics and phase as well as stability diagrams relevant for diffusion studies are introduced. Following, Fick's laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect are discussed. Short circuit diffusion is explained in detail with an emphasis on grain boundary diffusion Recent advances in the area of interdiffusion will be introduced. Interdiffusion in multi-component systems is also explained. Many practical examples will be given, such that researches working in this area can learn the practical evaluation of various diffusion parameters from experimental results. Large number of illustrations and experimental results are used to explain the subject. This book will be appealing for students, academicians, engineers and researchers in academic institutions, industry research and development laboratories.

Thermodynamics for Chemical Engineers

by Kenneth Richard Hall Gustavo Arturo Iglesias-Silva

Learn the basics of thermodynamics in this complete and practice-oriented introduction for students of chemical engineering Thermodynamics is a vital branch of physics that focuses on the interaction of heat, work, and temperature with energy, radiation, and matter. Thermodynamics can apply to a wide range of sciences, but is particularly important in chemical engineering, where the interconnection of heat and work with chemical reactions or physical changes of state are studied according to the laws of thermodynamics. More, thermodynamics in chemical engineering focuses on pure fluid and mixture properties, phase equilibrium, and chemical reactions within the confines of the laws of thermodynamics. Given that thermodynamics is an essential course of study in chemical and petroleum engineering, Thermodynamics for Chemical Engineers provides an important introduction to the subject that comprehensively covers the topic in an easily-digestible manner. Suitable for undergraduate and graduate students, the text introduces the basic concepts of thermodynamics in a thorough and concisely while providing practice-oriented examples and illustrations. As such, the book helps students bridge the gap between theoretical knowledge and basic experiments and measurement characteristics. Thermodynamics for Chemical Engineers readers will also find: Practice-oriented examples to help students connect the learned concepts to actual laboratory instruments and experiments A broad suite of illustrations throughout the text to help illuminate the information presented Authors with decades working in chemical engineering and teaching thermodynamicsThermodynamics for Chemical Engineers is the ideal resource not just for undergraduate and graduate students in chemical and petroleum engineering, but also for anyone looking for a basic guide to thermodynamics.

Thermodynamics for Chemists, Physicists and Engineers

by Robert Hołyst Andrzej Poniewierski

Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students. Robert Hołyst (1963) is a professor at the Institute of Physical Chemistry Polish Academy of Sciences. He specializes in statistical physics, physical chemistry, biologistics and soft matter physics. He has published 182 papers and 2 books. He presented his works at multiple universities/institutes, e.g. Harvard, MIT, University of Chicago, ESPCI-Paris, ENS-Paris, several Max Planck Institutes, University of Tokyo, Oxford and Cambridge. He has over 17 years experience in teaching thermodynamics for undergraduate students. Andrzej Poniewierski (1951), professor at the Institute of Physical Chemistry Polish Academy of Sciences; published 53 papers and two books, specializes in soft matter and statistical physics, liquid crystals and applications of density functional theory to complex fluids. He has also taught thermodynamics for undergraduate students for several years.

Thermodynamics For Dummies

by Michael Pauken

The thermodynamics knowledge you need to succeed in class—and in your career Thermodynamics For Dummies, 2nd Edition covers the topics found in a typical undergraduate introductory thermodynamic course (which is an essential course to nearly all engineering degree programs). It also brings the subject to life with exciting content on where (and how!) thermodynamics is being used today (spoiler alert: everywhere!). You'll grasp the basics of how heat and energy interact, thermodynamic properties of reactions and mixtures, and how thermodynamic cycles are used to make things go. This useful guide also covers renewable energy systems, new refrigerant technology, and a more diverse perspective on the history of the field. Within, you'll: Get clear explanations of the laws of thermodynamics, thermodynamic cycles, and beyond Read about real-world examples to help you connect with the content Practice solving thermodynamic problems to internalize what you've learned For students looking for resources to demystify thermodynamics, Thermodynamics For Dummies, 2nd Edition is the perfect choice. Become thermodynamically savvy with this accessible guide!

Thermodynamics for Engineers (Mechanical and Aerospace Engineering Series)

by Kaufui Vincent Wong

Aspiring engineers need a text that prepares them to use thermodynamics in professional practice. Thermodynamics instructors need a concise textbook written for a one-semester undergraduate course-a text that foregoes clutter and unnecessary details but furnishes the essential facts and methods.Thermodynamics for Engineers, Second Edition continues

Thermodynamics for the Practicing Engineer

by Louis Theodore Francesco Ricci Timothy Van Vliet

This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

Thermodynamics, Gas Dynamics, and Combustion

by Henry Clyde Foust III

This textbook provides students studying thermodynamics for the first time with an accessible and readable primer on the subject. The book is written in three parts: Part I covers the fundamentals of thermodynamics, Part II is on gas dynamics, and Part III focuses on combustion. Chapters are written clearly and concisely and include examples and problems to support the concepts outlined in the text. The book begins with a discussion of the fundamentals of thermodynamics and includes a thorough analysis of engineering devices. The book moves on to address applications in gas dynamics and combustion to include advanced topics such as two-phase critical flow and blast theory. Written for use in Introduction to Thermodynamics, Advanced Thermodynamics, and Introduction to Combustion courses, this book uniquely covers thermodynamics, gas dynamics, and combustion in a clear and concise manner, showing the integral connections at an advanced undergraduate or graduate student level.

Thermodynamics I Essentials

by The Editors of REA

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics, availability functions, and gases.

Thermodynamics I Essentials

by The Editors of REA

REA’s Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics, availability functions, and gases.

Thermodynamics in Bioenergetics

by Jean-Louis Burgot

Thermodynamics in Bioenergetics aims to supply students with the knowledge and understanding of the critical concepts and theories that are needed in the biochemistry and bioenergetics fields. Biochemical reactions highlighting thermodynamics, chemical kinetics, and enzymes are addressed in the text. Author, Jean-Louis Burgot, guides the reader through the starting points, strategy description, and theory results to facilitate their comprehension of the theories and examples being discussed in the book. Also discussed in the text are the notions of Gibbs energy, entropy, and exergonic and endergonic reactions.

Thermodynamics in Earth and Planetary Sciences (Springer Textbooks in Earth Sciences, Geography and Environment)

by Jibamitra Ganguly

Based on a university course, this book provides an exposition of a large spectrum of geological, geochemical and geophysical problems that are amenable to thermodynamic analysis. It also includes selected problems in planetary sciences, relationships between thermodynamics and microscopic properties, particle size effects, methods of approximation of thermodynamic properties of minerals, and some kinetic ramifications of entropy production. The textbook will enable graduate students and researchers alike to develop an appreciation of the fundamental principles of thermodynamics, and their wide ranging applications to natural processes and systems.

Thermodynamics in Earth and Planetary Sciences

by Jibamitra Ganguly

Based on a university course, this book provides an exposition of a large spectrum of geological, geochemical and geophysical problems that are amenable to thermodynamic analysis. It also includes selected problems in planetary sciences, relationships between thermodynamics and microscopic properties, particle size effects, methods of approximation of thermodynamic properties of minerals, and some kinetic ramifications of entropy production. The textbook will enable graduate students and researchers alike to develop an appreciation of the fundamental principles of thermodynamics, and their wide ranging applications to natural processes and systems.

Thermodynamics in Materials Science

by Robert DeHoff

Thermodynamics in Materials Science, Second Edition is a clear presentation of how thermodynamic data is used to predict the behavior of a wide range of materials, a crucial component in the decision-making process for many materials science and engineering applications. This primary textbook accentuates the integration of principles, strategies, a

Thermodynamics in Nuclear Power Plant Systems

by Patrick McDaniel Bahman Zohuri

This revised book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. This text treats the fundamentals of thermodynamics from the perspective of nuclear power systems. In addition to the Four Laws of Thermodynamics, it discusses Brayton and Rankine power cycles in detail with an emphasis on how they are implemented in nuclear systems. Chapters have been brought up-to-date due to significant new results that have become available for intercooled systems and combined cycles and include an updated steam table. The book starts with basic principles of thermodynamics as applied to power plant systems. It then describes how Nuclear Air-Brayton systems will work. It documents how they can be designed and the expected ultimate performance. It describes several types of Nuclear Air-Brayton systems that can be employed to meet different requirements and estimates component sizes and performance criteria for Small Modular Reactors (SMR) based on the Air-Brayton concept. The book provides useful insight into the engineering of nuclear power systems for students and the tabular data will be of great use to practicing engineers.

Thermodynamics In Nuclear Power Plant Systems

by Bahman Zohuri Patrick Mcdaniel

This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book's core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.

Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Fundamental Theories of Physics #195)

by Felix Binder Luis A. Correa Christian Gogolin Janet Anders Gerardo Adesso

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.

Thermodynamics Kept Simple - A Molecular Approach: What is the Driving Force in the World of Molecules?

by Roland Kjellander

Thermodynamics Kept Simple - A Molecular Approach: What is the Driving Force in the World of Molecules? offers a truly unique way of teaching and thinking about basic thermodynamics that helps students overcome common conceptual problems. For example, the book explains the concept of entropy from the perspective of probabilities of various molecula

Thermodynamics Made Simple for Energy Engineers: & Engineers in Other Disciplines

by S. Bobby Rauf

Every non-fiction book has an objective or mission. The mission of this book is to give the reader an overview of the important principles, concepts and analytical techniques pertaining to thermodynamics, written in a fashion that makes this abstract and complex subject relatively easy to comprehend. The audience this text speaks to includes engineers, professionals with science and math backgrounds, energy professionals, and technicians. The content is presented in a way which also allows many non-engineering professionals to follow the material and glean useful knowledge. For energy engineers who have been away from direct engineering practice for a while, this book will serve as a quick and effective refresher. Thermodynamics topics such as enthalpy, entropy, latent heat, sensible heat, heat of fusion, and heat of sublimation are explained and illustrated in detail. Also covered are phases of substances, the law of conservation of energy, SFEE, the first and second laws of thermodynamics, ideal gas laws, and pertinent formulas. The author examines various thermodynamic processes, as well as heat and power cycles such as Rankine and Carnot. Case studies are used to illustrate various thermodynamics principles, and each chapter concludes with a list of questions or problems for self-assessment, with answers provided at the end of the book.

Thermodynamics Of Chemical Processes

by Gareth Price

The Primer describes the basic principles which govern reactivity and phase equilibria in chemical systems. It is written at the first year undergraduate level and contains a number of worked examples and problems to help students through this introductory material. The ideas of enthalpy,internal energy and entropy are covered to lead into Gibbs free energy and how it can be used to correlate and predict the equilibrium position and properties of chemical reactions and multi-phase systems. Some background mathematical ideas are introduced as needed as well as material describing howthe physicochemical principles can be applied to related areas such as materials science or biochemistry

Thermodynamics of Crystalline Materials: From Nano to Macro (SpringerBriefs in Materials)

by Jean-Claude Tedenac

This book provides expert treatment of the use of the Calphad calculations for the study of crystal structures and thermodynamics relationships in phase diagram determination. After a short review of the relationships between crystal structures and the thermodynamics of materials, including all possible phase transformations, the book proceeds to a brief discussion of the methods for solving the stability hierarchy of different phases. Coverage includes both theoretical calculations and experimental methods based on classical thermodynamics, with emphasis on the latter. The experimental approach is mainly carried out using heat-exchange data associated with the transition of one form into another. It is demonstrated that the crystallographic properties must be associated with the phase transformations and should be taken into account. The role of X-ray crystallography therein is also discussed. Readers interested in carrying out related research will appreciate the detailed discussion and critical analysis of key results obtained by the author and his colleagues over the past five years.

Thermodynamics of Crystalline States

by Minoru Fujimoto

Thermodynamics is an established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a legitimate description of crystalline states. Intended for readers with prior knowledge of condensed matter physics, this book emphasizes the roles played by order variables and dynamic lattices in crystals for thermodynamics of crystalline states. The crystalline state is generally heterogeneous, where order variables are in collective motion interacting with the lattice at excited levels, as witnessed in transition anomalies in dielectric crystals and from superconducting transitions in metals. The collective motion exhibits finite amplitude due to long-range order, breaking lattice symmetry that leads to a structural change. Such a non-linear process is discussed in the chapter of soliton theory, and related experimental evidences are also listed in this book. This book is divided into three parts for the convenience of readers. In Part I, basic concepts of phonons and order variables are reviewed. Part 2 is devoted to discussions of binary transitions, and in Part 3 we discuss superconducting transitions in simple metals.

Thermodynamics of Crystalline States, 2nd Edition

by Minoru Fujimoto

Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on mesoscopic phenomena in solid states, constituting a basic subject in condensed matter physics. While this book serves as a guide for advanced students in physics and material science, it can also be useful as a reference for all professionals in related fields. Minoru Fujimoto is author of Physics of Classical Electromagnetism (Springer, 2007) and The Physics of Structural Phase Transitions (Springer, 2005).

Refine Search

Showing 76,501 through 76,525 of 83,107 results