Browse Results

Showing 13,751 through 13,775 of 72,518 results

Computational Methods for Microstructure-Property Relationships

by Dennis Dimiduk Somnath Ghosh

Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.

Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves (Nanostructure Science and Technology)

by Igor Tsukerman

Positioning itself at the common boundaries of several disciplines, this work provides new perspectives on modern nanoscale problems where fundamental science meets technology and computer modeling. In addition to well-known computational techniques such as finite-difference schemes and Ewald summation, the book presents a new finite-difference calculus of Flexible Local Approximation Methods (FLAME) that qualitatively improves the numerical accuracy in a variety of problems.

Computational Methods for Reinforced Concrete Structures

by Ulrich Häußler-Combe

The book covers the application of numerical methods to reinforced concrete structures. To analyze reinforced concrete structures linear elastic theories are inadequate because of cracking, bond and the nonlinear and time dependent behavior of both concrete and reinforcement. These effects have to be considered for a realistic assessment of the behavior of reinforced concrete structures with respect to ultimate limit states and serviceability limit states. The book gives a compact review of finite element and other numerical methods. The key to these methods is through a proper description of material behavior. Thus, the book summarizes the essential material properties of concrete and reinforcement and their interaction through bond. These basics are applied to different structural types such as bars, beams, strut and tie models, plates, slabs and shells. This includes prestressing of structures, cracking, nonlinear stress?strain relations, creeping, shrinkage and temperature changes. Appropriate methods are developed for each structural type. Large displacement and dynamic problems are treated as well as short-term quasi-static problems and long-term transient problems like creep and shrinkage. Most problems are illustrated by examples which are solved by the program package ConFem, based on the freely available Python programming language. The ConFem source code together with the problem data is available under open source rules at concrete-fem.com. The author aims to demonstrate the potential and the limitations of numerical methods for simulation of reinforced concrete structures, addressing students, teachers, researchers and designing and checking engineers.

Computational Methods for Sensor Material Selection (Integrated Analytical Systems)

by Charles J. Taylor Margaret A. Ryan M. L. Homer Mario Blanco Joseph R. Stetter Abhijit V. Shevade

Chemical vapor sensing arrays have grown in popularity over the past two decades, finding applications for tasks such as process control, environmental monitoring, and medical diagnosis. This is the first in-depth analysis of the process of choosing materials and components for these "electronic noses", with special emphasis on computational methods. For a view of component selection with an experimental perspective, readers may refer to the complementary volume of Integrated Microanalytical Systems entitled "Combinatorial Methodologies for Sensor Materials."

Computational Methods in Catalysis and Materials Science: An Introduction for Scientists and Engineers

by Rutger A. van Santen Philippe Sautet

This practical guide describes the basic computational methodologies for catalysis and materials science at an introductory level, presenting the methods with relevant applications, such as spectroscopic properties, chemical reactivity and transport properties of catalytically interesting materials. Edited and authored by internationally recognized scientists, the text provides examples that may be considered and followed as state-of-the art.

Computational Methods in Earthquake Engineering: Volume 2 (Computational Methods in Applied Sciences #30)

by Manolis Papadrakakis Michalis Fragiadakis Vagelis Plevris

This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS).

Computational Methods in Earthquake Engineering: Volume 2 (Computational Methods in Applied Sciences #21)

by Manolis Papadrakakis Nikos D. Lagaros Michalis Fragiadakis

This book provides an insight in advanced methods and concepts for structural analysis and design against seismic loading. The book consists of 25 chapters dealing with a wide range of timely issues in contemporary Earthquake Engineering. In brief, the topics covered are: collapse assessment, record selection, effect of soil conditions, problems in seismic design, protection of monuments, earth dam structures and liquid containers, numerical methods, lifetime assessment, post-earthquake measures. A common ground of understanding is provided between the communities of Earth Sciences and Computational Mechanics towards mitigating seismic risk. The topic is of great social and scientific interest, due to the large number of scientists and practicing engineers currently working in the field and due to the great social and economic consequences of earthquakes.

Computational Methods in Earthquake Engineering: Volume 3 (Computational Methods in Applied Sciences #44)

by Manolis Papadrakakis Nikos D. Lagaros Vagelis Plevris

This book provides an insight in advanced methods and concepts for structural analysis and design against seismic loading. The book consists of 25 chapters dealing with a wide range of timely issues in contemporary Earthquake Engineering. In brief, the topics covered are: collapse assessment, record selection, effect of soil conditions, problems in seismic design, protection of monuments, earth dam structures and liquid containers, numerical methods, lifetime assessment, post-earthquake measures. A common ground of understanding is provided between the communities of Earth Sciences and Computational Mechanics towards mitigating seismic risk. The topic is of great social and scientific interest, due to the large number of scientists and practicing engineers currently working in the field and due to the great social and economic consequences of earthquakes.

Computational Methods in Elasticity and Plasticity: Solids and Porous Media

by A. Anandarajah

Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.

Computational Methods in Engineering: Finite Difference, Finite Volume, Finite Element, and Dual Mesh Control Domain Methods (Applied and Computational Mechanics)

by J.N. Reddy

Computational Methods in Engineering: Finite Difference, Finite Volume, Finite Element, and Dual Mesh Control Domain Methods provides readers with the information necessary to choose appropriate numerical methods to solve a variety of engineering problems. Explaining common numerical methods in an accessible yet rigorous manner, the book details the finite element method (FEM), finite volume method (FVM) and importantly, a new numerical approach, dual mesh control domain method (DMCDM).Numerical methods are crucial to everyday engineering. The book begins by introducing the various methods and their applications, with example problems from a range of engineering disciplines including heat transfer, solid and structural mechanics, and fluid mechanics. It highlights the strengths of FEM, with its systematic procedure and modular steps, and then goes on to explain the uses of FVM. It explains how DMCDM embodies useful parts of both FEM and FVM, particularly in its use of the control domain method and how it can provide a comprehensive computational approach. The final chapters look at ways to use different numerical methods, primarily FEM and DMCDM, to solve typical problems of bending of beams, axisymmetric circular plates, and other nonlinear problems.This book is a useful guide to numerical methods for professionals and students in all areas of engineering and engineering mathematics.

Computational Methods in Engineering

by S. P. Venkateshan Prasanna Swaminathan

The book is designed to serve as a textbook for courses offered to graduate and upper-undergraduate students enrolled in mechanical engineering. The book attempts to make students with mathematical backgrounds comfortable with numerical methods. The book also serves as a handy reference for practicing engineers who are interested in applications. The book is written in an easy-to-understand manner, with the essence of each numerical method clearly stated. This makes it easy for professional engineers, students, and early career researchers to follow the material presented in the book. The structure of the book has been modeled accordingly. It is divided into four modules: i) solution of a system of equations and eigenvalues which includes linear equations, determining eigenvalues, and solution of nonlinear equations; ii) function approximations: interpolation, data fit, numerical differentiation, and numerical integration; iii) solution of ordinary differential equations—initial value problems and boundary value problems; and iv) solution of partial differential equations—parabolic, elliptic, and hyperbolic PDEs. Each section of the book includes exercises to reinforce the concepts, and problems have been added at the end of each chapter. Exercise problems may be solved by using computational tools such as scientific calculators, spreadsheet programs, and MATLAB codes. The detailed coverage and pedagogical tools make this an ideal textbook for students, early career researchers, and professionals.

Computational Methods in Physics: Compendium for Students (Graduate Texts in Physics)

by Simon Širca Martin Horvat

This textbook provides a compendium of numerical methods to assist physics students and researchers in their daily work. It carefully considers error estimates, stability and convergence issues, the choice of optimal methods, and techniques to increase program execution speeds. The book supplies numerous examples throughout the chapters that are concluded by more comprehensive problems with a strong physics background. Instead of uncritically employing modern black-box tools, the readers are encouraged to develop a more ponderous and skeptical approach. This revised and expanded edition now includes a new chapter on numerical integration and stable differentiation, as well as fresh material on optimal filtering, integration of gravitational many-body problems, computation of Poincaré maps, regularization of orbits, singular Sturm-Liouville problems, techniques for time evolution and spatial treatment of (semi)infinite domains in spectral methods, and phase retrieval. It also brings updated discussions of algebraic problems involving sparse matrices and of high-resolution schemes for partial differential equations.

Computational Methods in Power System Analysis (Atlantis Studies in Scientific Computing in Electromagnetics #1)

by Reijer Idema Domenico J.P. Lahaye

This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.

Computational Methods in Science and Technology: Proceedings of the 4th International Conference on Computational Methods in Science & Technology (ICCMST 2024), 2–3 May 2024, Mohali, India, Volume 1

by Sukhpreet Kaur Sushil Kamboj Manish Kumar Arvind Dagur Dhirendra Kumar Shukla

This book contains the proceedings of the 4TH International Conference on Computational Methods in Science and Technology (ICCMST 2024).The proceedings explores research and innovation in the field of Internet of things, Cloud Computing, Machine Learning, Networks, System Design and Methodologies, Big Data Analytics and Applications, ICT for Sustainable Environment, Artificial Intelligence and it provides real time assistance and security for advanced stage learners, researchers and academicians has been presented.This will be a valuable read to researchers, academicians, undergraduate students, postgraduate students, and professionals within the fields of Computer Science, Sustainability and Artificial Intelligence.

Computational Methods in Science and Technology: Proceedings of the 4th International Conference on Computational Methods in Science & Technology (ICCMST 2024), 2–3 May 2024, Mohali, India, Volume 2

by Sukhpreet Kaur Sushil Kamboj Manish Kumar Arvind Dagur Dhirendra Kumar Shukla

This book contains the proceedings of the 4TH International Conference on Computational Methods in Science and Technology (ICCMST 2024).The proceedings explores research and innovation in the field of Internet of things, Cloud Computing, Machine Learning, Networks, System Design and Methodologies, Big Data Analytics and Applications, ICT for Sustainable Environment, Artificial Intelligence and it provides real time assistance and security for advanced stage learners, researchers and academicians has been presented.This will be a valuable read to researchers, academicians, undergraduate students, postgraduate students, and professionals within the fields of Computer Science, Sustainability and Artificial Intelligence.

Computational Methods in Stochastic Dynamics: Volume 2 (Computational Methods in Applied Sciences #22)

by Manolis Papadrakakis George Stefanou Vissarion Papadopoulos

At the dawn of the 21st century, computational stochastic dynamics is an emerging research frontier. This book focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The book is primarily intended for researchers and post-graduate students in the fields of computational mechanics and stochastic structural dynamics. Nevertheless, practice engineers as well could benefit from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures. The book addresses mathematical and numerical issues in stochastic structural dynamics and connects them to real-world applications. It consists of 16 chapters dealing with recent advances in a wide range of related topics (dynamic response variability and reliability of stochastic systems, risk assessment, stochastic simulation of earthquake ground motions, efficient solvers for the analysis of stochastic systems, dynamic stability, stochastic modelling of heterogeneous materials). Numerical examples demonstrating the significance of the proposed methods are presented in each chapter.

Computational Methods in Stochastic Dynamics: Volume 2 (Computational Methods in Applied Sciences #26)

by Manolis Papadrakakis George Stefanou Vissarion Papadopoulos

The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology. This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and represent some of the most recent developments in this field. The book consists of 21 chapters which can be grouped into several thematic topics including dynamic analysis of stochastic systems, reliability-based design, structural control and health monitoring, model updating, system identification, wave propagation in random media, seismic fragility analysis and damage assessment. This edited book is primarily intended for researchers and post-graduate students who are familiar with the fundamentals and wish to study or to advance the state of the art on a particular topic in the field of computational stochastic structural dynamics. Nevertheless, practicing engineers could benefit as well from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures.

Computational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering: A Tribute to the Research Contributions of Prof. Andrei Reinhorn (Geotechnical, Geological and Earthquake Engineering #33)

by Gian Paolo Cimellaro Satish Nagarajaiah Sashi K. Kunnath

The book is a tribute to the research contribution of Professor Andrei Reinhorn in the field of earthquake engineering. It covers all the aspects connected to earthquake engineering starting from computational methods, hybrid testing and control, resilience and seismic protection which have been the main research topics in the field of earthquake engineering in the last 30 years. These were all investigated by Prof. Reinhorn throughout his career. The book provides the most recent advancements in these four different fields, including contributions coming from six different countries giving an international outlook to the topics.

Computational Methods with MATLAB® (Synthesis Lectures on Engineering, Science, and Technology)

by Erik Cuevas Alberto Luque Héctor Escobar

This textbook provides readers a comprehensive introduction to numerical methods, using MATLAB®. The authors discuss the theory and application of the most often used numerical methods, using MATLAB as a computational tool. The book is designed to be accessible to readers of varying backgrounds, so the presentation focuses more on the description, implementation, and application of the methods and less on the mathematical details. This book not only covers the most important methods and techniques of scientific computation, but also contains a great amount of code and implementations, facilitating the process of learning and application.

Computational Metrics for Soccer Analysis: Connecting the dots (SpringerBriefs in Applied Sciences and Technology)

by Filipe Manuel Clemente João Bernardo Sequeiros Acácio F. P. P. Correia Frutuoso G. M. Silva Fernando Manuel Lourenço Martins

This book provides an account of the use of computational tactical metrics in improving sports analysis, in particular the use of Global Positioning System (GPS) data in soccer. As well as offering a practical perspective on collective behavioural analysis, it introduces the computational metrics available in the literature that allow readers to identify collective behaviour and patterns of play in team sports. These metrics only require the bio-dimensional geo-referencing information from GPS or video-tracking systems to provide qualitative and quantitative information about the tactical behaviour of players and the inter-relationships between teammates and their opponents. Exercises, experimental cases and algorithms enable readers to fully comprehend how to compute these metrics, as well as introducing them to the ultimate performance analysis tool, which is the basis to run them on. The script to compute the metrics is presented in Python. The book is a valuable resource for professional analysts as well students and researchers in the field of sports analysis wanting to optimise the use of GPS trackers in soccer.

Computational Modeling and Data Analysis in COVID-19 Research (Emerging Trends in Biomedical Technologies and Health informatics)

by Chhabi Rani Panigrahi, Bibudhendu Pati, Mamata Rath and Rajkumar Buyya

This book covers recent research on the COVID-19 pandemic. It includes the analysis, implementation, usage, and proposed ideas and models with architecture to handle the COVID-19 outbreak. Using advanced technologies such as artificial intelligence (AI) and machine learning (ML), techniques for data analysis, this book will be helpful to mitigate exposure and ensure public health. We know prevention is better than cure, so by using several ML techniques, researchers can try to predict the disease in its early stage and develop more effective medications and treatments. Computational technologies in areas like AI, ML, Internet of Things (IoT), and drone technologies underlie a range of applications that can be developed and utilized for this purpose. Because in most cases there is no one solution to stop the spreading of pandemic diseases, and the integration of several tools and tactics are needed. Many successful applications of AI, ML, IoT, and drone technologies already exist, including systems that analyze past data to predict and conclude some useful information for controlling the spread of COVID-19 infections using minimum resources. The AI and ML approach can be helpful to design different models to give a predictive solution for mitigating infection and preventing larger outbreaks. This book: Examines the use of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), and drone technologies as a helpful predictive solution for controlling infection of COVID-19 Covers recent research related to the COVID-19 pandemic and includes the analysis, implementation, usage, and proposed ideas and models with architecture to handle a pandemic outbreak Examines the performance, implementation, architecture, and techniques of different analytical and statistical models related to COVID-19 Includes different case studies on COVID-19 Dr. Chhabi Rani Panigrahi is Assistant Professor in the Department of Computer Science at Rama Devi Women’s University, Bhubaneswar, India. Dr. Bibudhendu Pati is Associate Professor and Head of the Department of Computer Science at Rama Devi Women’s University, Bhubaneswar, India. Dr. Mamata Rath is Assistant Professor in the School of Management (Information Technology) at Birla Global University, Bhubaneswar, India. Prof. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia.

Computational Modeling and Simulation of Advanced Wireless Communication Systems

by Mohammad S. Obaidat Mohammad Hammoudeh Agbotiname Lucky Imoize Webert Montlouis Segun I. Popoola

The book covers the exploitation of computational models for effectively developing and managing large-scale wireless communication systems. The goal is to create and establish computational models for seamless human interaction and efficient decision-making in beyond 5G wireless systems.Computational Modeling and Simulation of Advanced Wireless Communication Systems looks to create and establish computational models for seamless human interaction and efficient decision-making in the beyond 5G wireless systems. This book presents the design and development of several computational modeling techniques and their applications in wireless communication systems. It examines shortcomings and limitations of the existing computational models and offers solutions to revamp the traditional architecture toward addressing the vast network issues in wireless systems. The book addresses the need to design efficient computational and simulation models to address several issues in wireless communication systems, such as interference, pathloss, delay, traffic outage, and so forth. It discusses how theoretical, mathematical, and experimental results are integrated for optimal system performance to enhance the quality of service for mobile subscribers.Further, the book is intended for industry and academic researchers, scientists, and engineers in the fields of wireless communications and ICTs. It is structured to present a practical guide to wireless communication engineers, IT practitioners, researchers, students, and other professionals.

Computational Modeling and Sustainable Energy: Proceedings of ICCMSE 2023 (Innovations in Sustainable Technologies and Computing)

by Brajesh Kumar Jha Navnit Jha Jwngsar Brahma Mehmet Yavuz

This book features best-selected research papers presented at International Conference on Computational Modeling and Sustainable Energy (ICCMSE 2023) held at Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, during December 15–17, 2023. It comprises high-quality research work by academicians and industrial experts in the field of machine learning, mobile computing, natural language processing, fuzzy computing, green computing, human–computer interaction, information retrieval, intelligent control, data mining and knowledge discovery, evolutionary computing, big data, cloud computing, business intelligence, Internet security, pattern recognition, and sustainable energy.

Computational Modeling for Fluid Flow and Interfacial Transport

by Wei Shyy

Practical applications and examples highlight this treatment of computational modeling for handling complex flowfields. A reference for researchers and graduate students of many different backgrounds, it also functions as a text for learning essential computation elements.Drawing upon his own research, the author addresses both macroscopic and microscopic features. He begins his three-part treatment with a survey of the basic concepts of finite difference schemes for solving parabolic, elliptic, and hyperbolic partial differential equations. The second part concerns issues related to computational modeling for fluid flow and transport phenomena. In addition to a focus on pressure-based methods, this section also discusses practical engineering applications. The third and final part explores the transport processes involving interfacial dynamics, particularly those influenced by phase change, gravity, and capillarity. Case studies, employing previously discussed methods, demonstrate the interplay between the fluid and thermal transport at macroscopic scales and their interaction with the interfacial transport.

Computational Modeling in Biomechanics

by Suvranu De Farshid Guilak Mohammad Mofrad

Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.

Refine Search

Showing 13,751 through 13,775 of 72,518 results