- Table View
- List View
Computational Analysis of Sound Scenes and Events
by Tuomas Virtanen Mark D. Plumbley Dan EllisThis book presents computational methods for extracting the useful information from audio signals, collecting the state of the art in the field of sound event and scene analysis. The authors cover the entire procedure for developing such methods, ranging from data acquisition and labeling, through the design of taxonomies used in the systems, to signal processing methods for feature extraction and machine learning methods for sound recognition. The book also covers advanced techniques for dealing with environmental variation and multiple overlapping sound sources, and taking advantage of multiple microphones or other modalities. The book gives examples of usage scenarios in large media databases, acoustic monitoring, bioacoustics, and context-aware devices. Graphical illustrations of sound signals and their spectrographic representations are presented, as well as block diagrams and pseudocode of algorithms.
Computational Approaches for Urban Environments (Geotechnologies and the Environment #13)
by Michael Leitner Jamal Jokar Arsanjani Marco HelbichThis book aims to promote the synergistic usage of advanced computational methodologies in close relationship to geospatial information across cities of different scales. A rich collection of chapters subsumes current research frontiers originating from disciplines such as geography, urban planning, computer science, statistics, geographic information science and remote sensing. The topics covered in the book are of interest to researchers, postgraduates, practitioners and professionals. The editors hope that the scientific outcome of this book will stimulate future urban-related international and interdisciplinary research, bringing us closer to the vision of a "new science of cities. "
Computational Approaches in Biomaterials and Biomedical Engineering Applications (Emerging Trends in Biomedical Technologies and Health informatics)
by Sebastián Jaramillo-Isaza Roshani Raut Pranav Deepak Pathak Pradnya Borkar Rutvij H. JhaveriComputational Approaches in Bioengineering, Volume 2—Computational Approaches in Biomaterials and Biomedical Engineering Applications is a comprehensive and up-to-date resource that provides a broad overview of the use of computational methods in the fields of biomaterials and biomedical engineering. Written by a team of experts in the field of biomaterials and biomedical engineering, it provides a wealth of information on the use of computational methods in these fields. Furthermore, it explores emerging trends and discusses future directions and associated limitations in the field. Through thorough exploration and explanation, it showcases the latest research and advancements, offering valuable insights into how computational methods are utilized to design and optimize biomaterials, simulate biological processes, and develop innovative medical devices.FEATURES Provides practical guidance and real-world examples to help readers apply computational approaches effectively in their work Explores the diverse computational approaches employed in biomaterials and biomedical engineering applications, offering a comprehensive view of the field Introduces emerging topics and cutting-edge techniques, keeping wide range of readers at the forefront of advancements in computational bioengineering Discusses the integration of computational methods in biomaterials and biomedical engineering, fostering a deeper understanding of their synergistic potential Provides a valuable resource for researchers, practitioners, and students alike, serving as a comprehensive guide to computational approaches in biomaterials and biomedical engineering applications The book is well-organized and easy to read. The chapters are written in a clear and concise style, and they provide a comprehensive overview of the topics covered. The book is also well-illustrated with figures and tables that help to explain the concepts discussed in the text. With its comprehensive coverage, practical examples, and expert insights, this book serves as a valuable resource for researchers, students, and professionals in the fields of biomaterials and biomedical engineering.
Computational Approaches in Biotechnology and Bioinformatics (Emerging Trends in Biomedical Technologies and Health informatics)
by Sebastián Jaramillo-Isaza Roshani Raut Pranav Deepak Pathak Pradnya Borkar Rutvij H. JhaveriVolume 1 of Computational Approaches in Bioengineering—Computational Approaches in Biotechnology and Bioinformatics—explores many significant topics of biomedical engineering and bioinformatics in an easily understandable format. It explores recent developments and applications in bioinformatics, biomechanics, artificial intelligence (AI), signal processing, wearable sensors, biomaterials, cell biology, synthetic biology, biostatistics, prosthetics, big data, and algorithms. From applications of biomaterials in advanced drug delivery systems to the role of big data, AI, and machine learning in disease diagnosis and treatment, the book will help readers understand how these technologies are being applied across the areas of biomedical engineering, bioinformatics, and healthcare. The chapters also include case studies on the role of medical robots in surgery and the determination of protein structure using genetic algorithms. The contributors are all leading experts across multiple disciplines and provide chapters that truly represent a complete view of these state-of-the-art technologies.FEATURES Covers a wide range of subjects from biomedical engineering like wearable devices, biomaterials, synthetic biology, phytochemical extraction, and prosthetics Explores AI, machine learning, big data analysis, and algorithms in biomedical engineering and bioinformatics in an easily understandable format Includes case studies on the role of medical robots in surgery and the determination of protein structure using genetic algorithms Discusses genetic diagnosis, classification, and risk prediction in cancer using next-generation sequencing in oncology This book is ideally designed for biomedical professionals, biomedical engineers, healthcare professionals, data engineers, clinicians, physicians, medical students, hospital directors, clinical researchers, and others who work in the field of artificial intelligence, bioinformatics, and computational biology.
Computational Approaches in Chlamydomonas reinhardtii for Effectual Bio-hydrogen Production (SpringerBriefs in Systems Biology)
by Pratyoosh Shukla M.V.K. KarthikThis book describes the feasibility of using molecular dynamics as a screening technique to identify the stability of HydA1 and PetF interactions. Structure-based computational approaches are necessary to recognize and characterize protein-protein complexes and their functions. It introduces the idea that for specific proteins, homology modeling is the most effective technique and that docking algorithms are an increasingly powerful tool for providing a detailed explanation of such interactions. This book is a useful source of information on biomass-based biofuels for researchers in the field of bio-hydrogen and bioinformatics techniques. Biofuel and bioenergy produced from unicellular microalgae Chlamydomonas reinhardtii is a clean energy source and providing information about functional optimization in HydA1 and PetF interactions will help researchers to adopt swift screening methods to identify key protein complexes and their functions. The book also provides an introduction to hydrogenases and associated Chlamydomonas reinhardtii, which is a useful model microorganism for research on biofuel production. The book focuses on the in silico methods such as phylogenetic studies, homology modeling, molecular docking, electrostatic studies and conformational analysis, which have the potential to become the most cost-effective methods for bio-fuel production. This book provides a valuable resource to senior undergraduate and graduate students, researchers, professionals and other interested individuals or groups working in the area of bioenergy with special reference to microalgal biofuel.
Computational Approaches in the Transfer of Aesthetic Values from Paintings to Photographs: Beyond Red, Green and Blue
by Xiaoyan Zhang Martin Constable Kap Luk Chan Jinze Yu Wang JunyanThis book examines paintings using a computational and quantitative approach. Specifically, it compares paintings to photographs, addressing the strengths and limitations of both. Particular aesthetic practices are examined such as the vista, foreground to background organisation and the depth planes. These are analysed using a range of computational approaches and clear observations are made. New generations of image-capture devices such as Google goggles and the light field camera, promise a future in which the formal attributes of a photograph are made available for editing to a degree that has hitherto been the exclusive territory of painting. In this sense paintings and photographs are converging, and it therefore seems an opportune time to study the comparisons between them. In this context, the book includes cutting-edge work examining how some of the aesthetic attributes of a painting can be transferred to a photograph using the latest computational approaches.
Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop
by David F. Rosenthal; Hiroshi G. OkunoThe interest of AI in problems related to understanding sounds has a rich history dating back to the ARPA Speech Understanding Project in the 1970s. While a great deal has been learned from this and subsequent speech understanding research, the goal of building systems that can understand general acoustic signals--continuous speech and/or non-speech sounds--from unconstrained environments is still unrealized. Instead, there are now systems that understand "clean" speech well in relatively noiseless laboratory environments, but that break down in more realistic, noisier environments. As seen in the "cocktail-party effect," humans and other mammals have the ability to selectively attend to sound from a particular source, even when it is mixed with other sounds. Computers also need to be able to decide which parts of a mixed acoustic signal are relevant to a particular purpose--which part should be interpreted as speech, and which should be interpreted as a door closing, an air conditioner humming, or another person interrupting. Observations such as these have led a number of researchers to conclude that research on speech understanding and on nonspeech understanding need to be united within a more general framework. Researchers have also begun trying to understand computational auditory frameworks as parts of larger perception systems whose purpose is to give a computer integrated information about the real world. Inspiration for this work ranges from research on how different sensors can be integrated to models of how humans' auditory apparatus works in concert with vision, proprioception, etc. Representing some of the most advanced work on computers understanding speech, this collection of papers covers the work being done to integrate speech and nonspeech understanding in computer systems.
Computational Bioengineering
by Guigen ZhangArguably the first book of its kind, Computational Bioengineering explores the power of multidisciplinary computer modeling in bioengineering. Written by experts, the book examines the interplay of multiple governing principles underlying common biomedical devices and problems, bolstered by case studies. It shows you how to take advantage of the la
Computational Bioengineering and Bioinformatics: Computer Modelling in Bioengineering (Learning and Analytics in Intelligent Systems #11)
by Nenad FilipovicThis book explores the latest and most relevant topics in the field of computational bioengineering and bioinformatics, with a particular focus on patient-specific, disease-progression modeling. It covers computational methods for cardiovascular disease prediction, with an emphasis on biomechanics, biomedical decision support systems, data mining, personalized diagnostics, bio-signal processing, protein structure prediction, biomedical image processing, analysis and visualization, and high-performance computing. It also discusses state-of-the-art tools for disease characterization, and recent advances in areas such as biomechanics, cardiovascular engineering, patient-specific modeling, population-based modeling, multiscale modeling, image processing, data mining, biomedical decision-support systems, signal processing, biomaterials and dental biomechanics, tissue and cell engineering, computational chemistry and high-performance computing. As such, it is a valuable resource for researchers, medical and bioengineering students, and medical device and software experts
Computational Biomechanics for Medicine: Challenges and Solutions in Computing (Lecture Notes in Bioengineering)
by Karol Miller Adam Wittek Poul M. F. Nielsen Martyn P. Nash Magdalena Kobielarz Anju R. BabuThis book presents peer-reviewed contributions from the MICCAI 2023 Computational Biomechanics for Medicine CBM XVIII Workshop held in conjunction with the 26th International MICCAI Conference. The content focuses on applications of computational biomechanics to computer-integrated medicine, which includes medical image computing, application of machine learning in image analysis and biomechanics, atlas based biomechanical simulations, novel algorithms of computational biomechanics and experimental methods for analysis of disease and injury mechanisms. The book details state-of-the-art progress in the above fields to researchers, students, and professionals.
Computational Biomechanics for Medicine: Deformation and Flow
by Poul M.F. Nielsen Karol Miller Adam WittekOne of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine.<P><P> Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2011) dedicated to research in the field of medical image computing and computer assisted medical interventions. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.
Computational Biomechanics for Medicine: From Algorithms to Models and Applications
by Poul M.F. Nielsen Karol Miller Adam Wittek Barry J. Doyle Grand JoldesMathematical modelling and computer simulation have proved tremendously successful in engineering. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. For example, continuum mechanics models provide a rational basis for analysing biomedical images by constraining the solution to biologically reasonable motions and processes. Biomechanical modelling can also provide clinically important information about the physical status of the underlying biology, integrating information across molecular, tissue, organ, and organism scales. The main goal of this workshop is to showcase the clinical and scientific utility of computational biomechanics in computer-integrated medicine.
Computational Biomechanics for Medicine: Fundamental Science and Patient-specific Applications
by Karol Miller Adam Wittek Barry Doyle Poul M. F. NielsenOne of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences and medicine. The Computational Biomechanics for Medicine series provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This 5th edition comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis and both patient-specific fluid dynamics and solid mechanics simulations.
Computational Biomechanics for Medicine: Imaging, Modeling and Computing
by Poul M.F. Nielsen Karol Miller Adam Wittek Barry Doyle Grand R. JoldesThe Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. <P><P>One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.
Computational Biomechanics for Medicine: Models, Algorithms And Implementation
by Karol Miller Adam Wittek Barry Doyle Poul M. F. Nielsen Grand R. Joldes Martyn P. NashThis volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics, injury biomechanics, biomechanics of the heart and vascular system, algorithms of computational biomechanics for medical image analysis, and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, Computational Biomechanics for Medicine: Measurments, Models, and Predictions provides an opportunity for specialists in the field to present their latest methodologies and advancements.
Computational Biomechanics for Medicine: Models, Algorithms And Implementation
by Poul M.F. Nielsen Karol MillerMathematical modelling and computer simulation have proved tremendously successful in engineering. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. For example, continuum mechanics models provide a rational basis for analysing biomedical images by constraining the solution to biologically reasonable motions and processes. Biomechanical modelling can also provide clinically important information about the physical status of the underlying biology, integrating information across molecular, tissue, organ, and organism scales. The main goal of this workshop is to showcase the clinical and scientific utility of computational biomechanics in computer-integrated medicine.
Computational Biomechanics for Medicine: Models, Algorithms and Implementation
by Poul M.F. Nielsen Karol Miller Adam WittekOne of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Models, Algorithms and Implementation collects the papers from the Seventh Computational Biomechanics for Medicine Workshop held in Nice in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.
Computational Biomechanics for Medicine: New Approaches and New Applications
by Karol Miller Adam Wittek Barry Doyle Poul M. F. NielsenOne of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences and medicine. The Computational Biomechanics for Medicine series provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This 5th edition comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis and both patient-specific fluid dynamics and solid mechanics simulations.
Computational Biomechanics for Medicine: Personalisation, Validation and Therapy
by Karol Miller Adam Wittek Poul M. F. Nielsen Grand R. Joldes Martyn P. NashThis book contains contributions from computational biomechanics specialists who present and exchange opinions on the opportunities for applying their techniques to computer-integrated medicine, including computer-aided surgery and diagnostic systems. Computational Biomechanics for Medicine collects peer-reviewed chapters from the annual Computational Biomechanics for Medicine Workshop, in conjunction with the Medical Image Computing and Computer Assisted Intervention [MICCAI] Society conference. The works are dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease diagnosis and prognosis, analysis of injury mechanisms, implant and prosthesis design, artificial organ design, and medical robotics. These chapters will appeal to a wide range of researchers and students within the fields of engineering and medicine, as well as those working in computational science.
Computational Biomechanics for Medicine: Soft Tissues and the Musculoskeletal System
by Poul M.F. Nielsen Karol Miller Adam WittekOne of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. <P><P> Computational Biomechanics for Medicine: Soft Tissues and the Musculoskeletal System collects the papers from the Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2010) in Beijing, dedicated to research in the field of medical image computing and computer assisted medical interventions. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, medical robotics.
Computational Biomechanics for Medicine: Solid and Fluid Mechanics Informing Therapy
by Karol Miller Adam Wittek Poul M. F. Nielsen Martyn NashComputational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2020) in Lima, Peru. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book appeals to researchers, students and professionals in the field.
Computational Biomechanics for Medicine: Solid and Fluid Mechanics for the Benefit of Patients
by Karol Miller Adam Wittek Poul M. F. Nielsen Grand Joldes Martyn P. NashComputational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.
Computational Biomechanics for Medicine: Towards Automation and Robustness of Computations in the Clinic
by Karol Miller Adam Wittek Poul M. F. Nielsen Martyn P. Nash Magdalena Kobielarz Anju R. BabuThis book presents contributions from the MICCAI 2022 Computational Biomechanics for Medicine Workshop. "Computational Biomechanics for Medicine - towards translation and better patient outcomes” comprises papers accepted for the MICCAI Computational Biomechanics for Medicine Workshop held in 2022 in Singapore. The content focuses on applications of computational biomechanics to computer-integrated medicine, which includes MICCAI topics of Medical Image Computing, Computer-Aided Modeling and Evaluation of Surgical Procedures, and Imaging, Analysis Methods for Image Guided Therapies, Computational Physiology, and Medical Robotics. Specific topics covered include medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book details state-of-the-art progress in the above fields to researchers, students, and professionals.
Computational Biomechanics for Medicine: Towards Translation and Better Patient Outcomes
by Karol Miller Adam Wittek Poul M. F. Nielsen Martyn P. Nash Xinshan LiThis book presents contributions from the MICCAI 2021 Computational Biomechanics for Medicine Workshop. "Computational Biomechanics for Medicine - towards translation and better patient outcomes” comprises papers accepted for the MICCAI Computational Biomechanics for Medicine Workshop held virtually in conjunction with Medical Image Computing and Computer Assisted Intervention conference 2021, based in Strasbourg. The content focuses on methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book details state-of-the-art progress in the above fields to researchers, students, and professionals.
Computational Biomechanics of the Wrist Joint (SpringerBriefs in Applied Sciences and Technology)
by Mohammed Rafiq Abdul Kadir Mohd Nazri BajuriThis book presents an analysis of the stress distribution and contact stresses in severe rheumatoid wrist after total wrist arthroplasty. It assesses and compares the load transfer throughout the joint and contact pressure at the articulations. The data obtained from this study is of importance as this provide greater evidence to the benefits of total wrist arthroplasty in rheumatoid arthritis patients.