Browse Results

Showing 14,051 through 14,075 of 73,907 results

Computational Modeling of Pulverized Coal Fired Boilers

by Vivek V. Ranade Devkumar F. Gupta

Harness State-of-the-Art Computational Modeling Tools Computational Modeling of Pulverized Coal Fired Boilers successfully establishes the use of computational modeling as an effective means to simulate and enhance boiler performance. This text factors in how computational flow models can provide a framework for developing a greater understanding o

Computational Modeling of Shallow Geothermal Systems (Multiphysics Modeling)

by Rafid Al-Khoury

A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal SystemsGeothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and green

Computational Modeling of Tensegrity Structures: Art, Nature, Mechanical and Biological Systems

by Buntara Sthenly Gan

This book provides an in-depth, numerical investigation of tensegrity systems from a structural point of view, using the laws of fundamental mechanics for general pin-jointed systems with self-stressed mechanisms. Tensegrity structures have been known for decades, mostly as an art of form for monuments in architectural design. In Computational Modeling of Tensegrity Structures, Professor Buntara examines these formations, integrating perspectives from mechanics, robotics, and biology, emphasizing investigation of tensegrity structures for both inherent behaviors and their apparent ubiquity in nature. The author offers numerous examples and illustrative applications presented in detail and with relevant MATLAB codes. Combining a chapter on the analyses of tensegrity structures along with sections on computational modeling, design, and the latest applications of tensegrity structures, the book is ideal for R&D engineers and students working in a broad range of disciplines interested in structural design.

Computational Modeling of Underground Coal Gasification

by Vivek V. Ranade Sanjay M Mahajani Ganesh Arunkumar Samdani

The book deals with development of comprehensive computational models for simulating underground coal gasification (UCG). It starts with an introduction to the UCG process and process modelling inputs in the form of reaction kinetics, flow patterns, spalling rate, and transport coefficient that are elaborated with methods to generate the same are described with illustrations. All the known process models are reviewed, and relative merits and limitations of the modeling approaches are highlighted and compared. The book describes all the necessary steps required to determine the techno-economic feasibility of UCG process for a given coal reserve, through modeling and simulation.

Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials (Advanced Structured Materials #49)

by Pablo Andrés Andrés Muñoz-Rojas

This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

Computational Modelling and Advanced Simulations (Computational Methods in Applied Sciences #24)

by Justín Murín Vladimír Kompiš Vladimír Kutiš

This book contains selected, extended papers presented at the thematic ECCOMAS conference on Computational Modelling and Advanced Simulations (CMAS2009) held in Bratislava, Slovakia, June 30 - July 3, 2009. Modelling and simulation of engineering problems play a very important role in the classic and new composite material sciences, and in design and computational prototyping of modern and advanced technologic parts and systems. According to this, the existing numerical methods have been improved and new numerical methods have been established for modelling and simulation of more and more complex and complicated engineering problems. The present book should contribute to the effort to make modelling and simulation more effective and accurate.

Computational Modelling and Simulation of Aircraft and the Environment, Volume 2: Aircraft Dynamics (Aerospace Series)

by Dominic J. Diston

Computational Modelling and Simulation of Aircraft and the Environment An in-depth discussion of aircraft dynamics modelling and simulation This book provides a comprehensive guide to modelling and simulation from basic physical and mathematical principles, giving the reader sufficient information to be able to build computational models of aircraft for the purposes of simulation and evaluation. Highly relevant to practitioners, it takes into account the multi-disciplinary nature of aerospace products and the integrated nature of the models needed in order to represent them. Volume 1- Platform Kinematics and Synthetic Environment focused on the modelling of a synthetic environment in which aircraft operate and its spatial relationship with vehicles that are situated and moving within it. This volume focuses on the modelling of aircraft and the interpretation of their flight dynamics. Key features: Includes chapters on equations of motion, fixed-wing aerodynamics, longitudinal flight and gas turbines, as well as an opening chapter that presents an overview of flight modelling and a concluding chapter that presents a number of additional topics such as aircraft structures and embedded systems. Serves as both a student text and practitioner reference. Follows on from previous Aerospace Series titles, offering a complementary view of vehicles and systems from the perspectives of mathematics, physics and simulation. This book offers a comprehensive guide for senior, graduate and postgraduate students of aerospace engineering as well as professional engineers involved in the modelling and simulation of aircraft.

Computational Modelling in Hydraulic and Coastal Engineering

by Christopher Koutitas Panagiotis D. Scarlatos

Computational simulation methods have a range of applications in hydraulic and coastal engineering. This textbook provides an introductory but comprehensive coverage of these methods. It emphasizes the finite differences method with applications in reservoir management, closed-conduit hydraulics, free-surface channel flows, surface gravity waves, groundwater movement and mass transport processes. It focuses on applications rather than lengthy theories or derivations of complex formulas and is supported by a wealth of hands-on numerical examples, PowerPoint presentations, learning assignment projects and quizzes.

Computational Modelling in Industry 4.0: A Sustainable Resource Management Perspective

by Ali Akbar Shaikh Irfan Ali Neha Gupta Prasenjit Chatterjee Ali AlArjani

This book addresses the different problems, practices, challenges and opportunities in sustainable resource management with the help of decision-making techniques to showcase the relevance of computational modelling approaches in sustainable management and Industry 4.0. It aims to address the inherent complexity of managing ecosystems, particularly with respect to involvement of multi-stakeholders, lack of information and uncertainties. Critical analyses are made to point out the need for, and propose a call to, a new way of thinking about sustainable resource management. This book will be useful for academicians, researchers, and industrialists in the field of industrial and production engineering.

Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics (Computational Methods in Applied Sciences #50)

by Alexander Gelfgat

Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.

Computational Modelling of Concrete Structures

by René De Borst Günther Meschke Nenad Bićanić Herbert Mang

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and

Computational Modelling of Concrete Structures: Proceedings Of The Euro-c 2006 Conference, Mayrhofen, Austria, 27-30 March 2006

by René De Borst Günther Meschke Nenad Bićanić Herbert Mang

Since 1984 the EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010) has provided a forum for academic discussion of the latest theoretical, algorithmic and modelling developments associated with computational simulations of concrete and concrete structure

Computational Modelling of Concrete Structures: Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), February 26 - March 1, 2018, Bad Hofgastein, Austria

by Bernhard Pichler Günther Meschke Jan G. Rots

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Computational Modelling of Concrete Structures: Proceedings of the EURO-C 2006 Conference, Mayrhofen, Austria, 27-30 March 2006

by Günther Meschke; René de Borst; Herbert Mang; Nenad Bićanić

This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.

Computational Modelling of Concrete and Concrete Structures

by Günther Meschke

Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.

Computational Modelling of Objects Represented in Images III: Fundamentals, Methods and Applications

by Paolo Di Giamberardino & Daniela Iacoviello R.M. Natal Jorge & João Manuel R.S. Tavares

Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications III contains all contributions presented at the International Symposium CompIMAGE 2012 - Computational Modelling of Object Presented in Images: Fundamentals, Methods and Applications (Rome, Italy, 5-7 September 2012). The contributions cover the state-o

Computational Modelling of Objects Represented in Images. Fundamentals, Methods and Applications: Proceedings of the International Symposium CompIMAGE 2006 (Coimbra, Portugal, 20-21 October 2006) (Lecture Notes In Computer Science / Image Processing, Computer Vision, Pattern Recognition, And Graphics Ser.)

by João Manuel R.S. Tavares R.M. Natal Jorge

This book contains keynote lectures and full papers presented at the International Symposium on Computational Modelling of Objects Represented in Images (CompIMAGE), held in Coimbra, Portugal, on 20-21 October 2006. International contributions from nineteen countries provide a comprehensive coverage of the current state-of-the-art in the fields of: - Image Processing and Analysis; - Image Segmentation; - Data Interpolation; - Registration, Acquisition and Compression; - 3D Reconstruction; - Objects Tracking; - Motion and Deformation Analysis; - Objects Simulation; - Medical Imaging; - Computational Bioimaging and Visualization. Related techniques also covered in this book include the finite element method, modal analyses, stochastic methods, principal and independent components analyses and distribution models. Computational Modelling of Objects Represented in Images will be useful to academics, researchers and professionals in Computational Vision (image processing and analysis), Computer Sciences, and Computational Mechanics.

Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage (Sustainable Energy Developments)

by Jochen Bundschuh Rafid Al-Khoury

A comprehensive mathematical and computational modeling of CO2 Geosequestration and Compressed Air Energy StorageEnergy and environment are two interrelated issues of great concern to modern civilization. As the world population will soon reach eight billion, the demand for energy will dramatically increase, intensifying the use of fossil fuels. Ut

Computational Models for Polydisperse Particulate and Multiphase Systems

by Daniele L. Marchisio Rodney O. Fox

Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.

Computational Morphologies: Design Rules Between Organic Models and Responsive Architecture

by Michela Rossi Giorgio Buratti

This book represents an invaluable and up-to-date international exchange of research, case studies and best practice to tackle the challenges of digital technology, computer-aided design, 3D modeling, prototyping machines and computational design. With contributions from leading experts in the field of industrial design and cultural heritage, it is split into three parts. The first part explores basic rules of design, design models and shape grammar, including the management of complex forms, and proves that innovative concepts may be derived from organic models using generative design. The second part then investigates responsive design, describing how to manage the changing morphologies of buildings through pre-programmed mechanisms of real-time response and feedback embedded in inhabitable spaces. Lastly, the third part focuses on digital heritage and its capability to increase the interaction and manipulation of object and concepts, ranging from augmented reality to modeling generative tools. The book gathers peer-reviewed papers presented at the eCAADe (Education and Research in Computer-Aided Architectural Design in Europe) Regional International Symposium, held in Milan, Italy, in 2015.

Computational Movement Analysis (SpringerBriefs in Computer Science)

by Patrick Laube

This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fields including GIScience, spatiotemporal databases and data mining. Key challenges in Computational Movement Analysis include bridging the semantic gap, privacy issues when movement data involves people, incorporating big and open data, and opportunities for decentralized movement analysis arising from the internet of things. The interdisciplinary concepts of Computational Movement Analysis make this an important book for professionals and students in computer science, geographic information science and its application areas, especially movement ecology and transportation research.

Computational Multiphase Geomechanics

by Fusao Oka Sayuri Kimoto

Numerical methods are very powerful tools for use in geotechnical engineering, particularly in computational geotechnics. Interest is strong in the new field of multi-phase nature of geomaterials, and the area of computational geotechnics is expanding. Alongside their companion volume Computational Modeling of Multiphase Geomaterials (CRC Press, 2012), Fusao Oka and Sayuri Kimoto cover recent progress in several key areas, such as air-water-soil mixture, cyclic constitutive models, anisotropic models, noncoaxial models, gradient models, compaction bands (a form of volumetric strain localization and strain localization under dynamic conditions), and the instability of unsaturated soils. The text also includes applications of computational modeling to large-scale excavation of ground, liquefaction analysis of levees during earthquakes, methane hydrate development, and the characteristics of contamination using bentonite. The erosion of embankments due to seepage flow is also presented.

Computational Multiscale Modeling of Fluids and Solids: Theory and Applications (Graduate Texts in Physics)

by Martin Oliver Steinhauser

The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.

Computational Nanomedicine and Nanotechnology: Lectures with Computer Practicums

by Renat R. Letfullin Thomas F. George

This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies. Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among the topics covered in-depth are: * The structure of cancer cells and their properties, as well as techniques for selective targeting of cancer and gene therapy. * Nanoplasmonics: Lorentz-Mie simulations of optical properties of nanoparticles and the use of plasmonic nanoparticles in diagnosis and therapy. * Nanophotonics: short and ultrashort laser pulse interactions with nanostructures, time and space simulations of thermal fields in and around the nanobioparticles, and nanoclusters heated by radiation. * Modeling of soft and hard biological tissue ablation by activated nanoparticles, as well as optical, thermal, kinetic, and dynamic modeling. * Detection techniques, including the design and methods of activation of nanodrugs and plasmon resonance detection techniques. * Design and fabrication of nanorobots and nanoparticles. * Effective implementation of nanotherapy treatments. * Nanoheat transfer, particularly the heating and cooling kinetics of nanoparticles. * . . . and more! Each chapter contains a set of lectures in the form of text for student readers and PowerPoints for use by instructors, as well as homework exercises. Selected chapters also contain computer practicums, including Maple codes and worked-out examples. This book helps readers become more knowledgeable and versant in nanomedicine and nanotechnology, inspires readers to work creatively and go beyond the ideas and topics presented within, and is sufficiently comprehensive to be of value to research scientists as well as students.

Computational Nanophotonics: Modeling and Applications

by Sarhan M. Musa

This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.

Refine Search

Showing 14,051 through 14,075 of 73,907 results