Browse Results

Showing 14,126 through 14,150 of 68,764 results

Control in System Dynamics: Comparative Analysis of Feedback Strategies (ISTE Consignment)

by Alain Oustaloup

In order to ensure a pedagogical presentation of the fundamentals, this book, which is based on 45 years of experience, endeavors to identify the main principles of the control scheme and its dynamics. The control loop is extensively developed because of the reference it constitutes in control. By establishing the control loop as equivalent to any other control or, more precisely, by making an elementary control loop appear, it becomes possible to reveal a part of this loop in other controls and, thanks to its regulator, qualitatively evaluate the control strategy. A comparative analysis then shows that the complexification of the control scheme does not necessarily go hand in hand with a better control strategy and therefore a better performance. Since robustness results from innovations in terms of performance desensitization, the CRONE control is presented, in view of the genuine domains of uncertainty taken into account and the small number of parameters to be optimized. The educational nature of this book is enhanced by numerous solved problems that develop examples of synthesis of different controls. Control in System Dynamics is intended for a very wide audience, including engineers, researchers, teachers and students hoping to expand their knowledge of control and dynamics in automatic control.

Control, Instrumentation and Mechatronics: Theory and Practice (Lecture Notes in Electrical Engineering #921)

by Norhaliza Abdul Wahab Zaharuddin Mohamed

This proceeding includes original and peer-reviewed research papers from the 3rd International Conference on Control, Instrumentation and Mechatronics Engineering (CIM2022). The conference is a virtual conference held on 2-3 March 2022. The topics covered latest work and finding in the area of Control Engineering, Mechatronics, Robotics and Automation, Artificial Intelligence, Manufacturing, Sensor, Measurement and Instrumentation. Moreover, the latest applications of instrumentations, control and mechatronics are provided. Therefore, this proceeding is a valuable material for researchers, academicians, university students and engineers.

Control Instrumentation Systems: Proceedings of CISCON 2018 (Lecture Notes in Electrical Engineering #581)

by C. Shreesha Ravindra D. Gudi

This volume contains selected papers which had been presented during CISCON 2018. The papers cover the latest trends in the fields of instrumentation, sensors and systems, industrial automation & control, image and signal processing, robotics, renewable energy, power systems and power drives, with focus on solving the current challenges faced in the field of instrumentation and control engineering. This volume will be of use to academic and industry researchers and students working in this field.

Control Loop Foundation - Batch and Continuous Processes

by Terrence Blevins Mark Nixon

In this in-depth book, the authors address the concepts and terminology that are needed to work in the field of process control. The material is presented in a straightforward manner that is independent of the control system manufacturer. It is assumed that the reader may not have worked in a process plant environment and may be unfamiliar with the field devices and control systems. Much of the material on the practical aspects of control design and process applications is based on the authors personal experience gained in working with process control systems. Thus, the book is written to act as a guide for engineers, managers, technicians, and others that are new to process control or experienced control engineers who are unfamiliar with multi-loop control techniques. After the traditional single-loop and multi-loop techniques that are most often used in industry are covered, a brief introduction to advanced control techniques is provided. Whether the reader of this book is working as a process control engineer, working in a control group or working in an instrument department, the information will set the solid foundation needed to understand and work with existing control systems or to design new control applications. At various points in the chapters on process characterization and control design, the reader has an opportunity to apply what was learned using web-based workshops. The only items required to access these workshops are a high-speed Internet connection and a web browser. Dynamic process simulations are built into the workshops to give the reader a realistic "hands-on" experience. Also, some information is provided on the web site that may be helpful in exploring basic and advanced control techniques. In addition to the online workshops, one chapter of the book is dedicated to techniques that may be used to create process simulations using tools that are commonly available within most distributed control systems. As control techniques are introduced, simple process examples are used to illustrate how these techniques are applied in industry. The last chapter of the book, on process applications, contains several more complex examples from industry that illustrate how basic control techniques may be combined to meet a variety of application requirements.

Control, Mechatronics and Automation Technology: Proceedings of the International Conference on Control, Mechatronics and Automation Technology (ICCMAT 2014), July 24-25, 2014, Beijing, China (IRAICS Proceedings)

by Dawei Zheng

This proceedings volume contains selected papers presented at the 2014 International Conference on Control, Mechatronics and Automation Technology (ICCMAT 2014), held July 24-25, 2014 in Beijing, China. The objective of ICCMAT 2014 is to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over th

Control of Autonomous Aerial Vehicles: Advances in Autopilot Design for Civilian UAVs (Advances in Industrial Control)

by Andrea L’Afflitto Gokhan Inalhan Hyo-Sang Shin

Control of Autonomous Aerial Vehicles is an edited book that provides a single-volume snapshot on the state of the art in the field of control theory applied to the design of autonomous unmanned aerial vehicles (UAVs), aka “drones”, employed in a variety of applications. The homogeneous structure allows the reader to transition seamlessly through results in guidance, navigation, and control of UAVs, according to the canonical classification of the main components of a UAV’s autopilot.Each chapter has been written to assist graduate students and practitioners in the fields of aerospace engineering and control theory. The contributing authors duly present detailed literature reviews, conveying their arguments in a systematic way with the help of diagrams, plots, and algorithms. They showcase the applicability of their results by means of flight tests and numerical simulations, the results of which are discussed in detail.Control of Autonomous Aerial Vehicles will interest readers who are researchers, practitioners or graduate students in control theory, autonomous systems or robotics, or in aerospace, mechanical or electrical engineering.

Control of Axially Moving Systems

by Keum-Shik Hong Li-Qun Chen Phuong-Tung Pham Xiao-Dong Yang

This book provides a comprehensive guideline on dynamic analysis and vibration control of axially moving systems. First, the mathematical models of various axially moving systems describing the string, beam, belt, and plate models are developed. Accordingly, dynamical issues such as the equilibrium configuration, critical velocity, stability, bifurcation, and further chaotic dynamics are analyzed. Second, this book covers the design of the control schemes based on the hitherto control strategies for axially moving systems: feedback control using the transfer function, variable structure control, control by regulating the axial velocity, wave cancellation approach, boundary control using the Lyapunov method, adaptive control, and hybrid control methods. Finally, according to the contents discussed in the book, specific aspects are outlined for initiating future research endeavors to be undertaken concerning axially moving systems. This book is useful to graduate students and researchers in industrial sectors such as continuous manufacturing systems, transport systems, power transmission systems, and lifting systems not to mention in academia.

Control of Batch Processes

by Cecil L. Smith

Gives a real world explanation of how to analyze and troubleshoot a process control system in a batch process plant* Explains how to analyze the requirements for controlling a batch process, develop the control logic to meet these requirements, and troubleshoot the process controls in batch processes* Presents three categories of batch processes (cyclical batch, multigrade facilities, and flexible batch) and examines the differences in the control requirements in each* Examines various concepts of a product recipe and what its nature must be in a flexible batch facility* Approaches the subject from the process perspective, with emphasis on the advantages of using structured logic in the automation of all but the simplest batch processes.* Discusses the flow of information starting at the plant floor and continuing through various levels of the control logic up to the corporate IT level

Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering

by Laurent Simon

Enables readers to apply process dynamics and control theory to solve bioprocess and drug delivery problemsThe control of biological and drug delivery systems is critical to the health of millions of people worldwide. As a result, researchers in systems biology and drug delivery rely on process dynamics and control theory to build our knowledge of cell behavior and to develop more effective therapeutics, controlled release devices, and drug administration protocols to manage disease.Written by a leading expert and educator in the field, this text helps readers develop a deep understanding of process dynamics and control theory in order to analyze and solve a broad range of problems in bioprocess and drug delivery systems. For example, readers will learn how stability criteria can be used to gain new insights into the regulation of biological pathways and lung mechanics. They'll also learn how the concept of a time constant is used to capture the dynamics of diffusive processes. Readers will also master such topics as external disturbances, transfer functions, and input/output models with the support of the author's clear explanations, as well as:Detailed examples from the biological sciences and novel drug delivery technologies160 end-of-chapter problems with step-by-step solutionsDemonstrations of how computational software such as MATLAB and Mathematica solve complex drug delivery problemsControl of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering is written primarily for undergraduate chemical and biomedical engineering students; however, it is also recommended for students and researchers in pharmaceutical engineering, process control, and systems biology. All readers will gain a new perspective on process dynamics and control theory that will enable them to develop new and better technologies and therapeutics to treat human disease.

Control of Cracking in Reinforced Concrete Structures

by Claude Rospar Jean-Michel Torrenti Jacques Cortade Jean-Philippe Dubois Silvano Erlicher François Toutlemonde Jacky Mazars Alain Sellier Philippe Bisch Daniele Chauvel Francis Barre Etienne Gallitre Jean-François Coste

The purpose of this book is to provide guidelines which can extend the existing standards and codes to cover these types of special works, especially those which are massive in nature, taking account of their specific behaviour in terms of cracking and shrinkage together with other important properties such as water/air leak tightness.

Control of Cutting Vibration and Machining Instability: A Time-Frequency Approach for Precision, Micro and Nano Machining

by C. Steve Suh Meng-Kun Liu

Presents new developments on machine tool vibration control based on discontinuous dynamical systems Machining instability is a topical area, and there are a wide range of publications that cover the topic. However, many of these previous studies have started by assuming that the behavior of the system can be linearised. Meanwhile, there are many recent advances in the fields of signal processing, nonlinear dynamics, and nonlinear control, all of which are relevant to the machining stability problem. This book establishes the fundamentals of cutting mechanics and machine tool dynamics in the simultaneous time-frequency domain. The new nonlinear control theory developed by the authors that facilitates simultaneous control of vibration amplitude in the time-domain and spectral response in the frequency-domain provides the foundation for the development of a controller architecture universally viable for the control of dynamic instability including bifurcation and chaos. Once parameters underlying the coupling, interaction, and evolution of different cutting states and between the tool and workpiece are established, they can then be incorporated into the architecture to create a control methodology that mitigate machining instability and enable robust, chatter-free machine tool design applicable in particular to high speed micro- and nano-machining. Presents new developments on machine tool vibration control based on discontinuous dynamical systems Provides a clear and concise approach to the understanding and control of machine tool and workpiece vibrations from an alternative view, contributing to an in-depth understanding of cutting dynamics and robust control of machining instability Equips the reader with the knowledge to understand the dynamics of cutting and operation of machine-tool systems in different conditions as well as the concept of cutting instability control Includes data examples in MATLAB coding

Control of Discrete-Time Descriptor Systems: An Anisotropy-based Approach (Studies In Systems, Decision And Control #157)

by Alexey A. Belov Olga G. Andrianova Alexander P. Kurdyukov

Control of Discrete-Time Descriptor Systems takes an anisotropy-based approach to the explanation of random input disturbance with an information-theoretic representation. It describes the random input signal more precisely, and the anisotropic norm minimization included in the book enables readers to tune their controllers better through the mathematical methods provided. The book contains numerous examples of practical applications of descriptor systems in various fields, from robotics to economics, and presents an information-theoretic approach to the mathematical description of coloured noise. Anisotropy-based analysis and design for descriptor systems is supplied along with proofs of basic statements, which help readers to understand the algorithms proposed, and to undertake their own numerical simulations. This book serves as a source of ideas for academic researchers and postgraduate students working in the control of discrete-time systems. The control design procedures outlined are numerically effective and easily implementable in MATLAB®

Control of Electric Machine Drive Systems

by Seung-Ki Sul

A unique approach to sensorless control and regulator design of electric drives Based on the author's vast industry experience and collaborative works with other industries, Control of Electric Machine Drive Systems is packed with tested, implemented, and verified ideas that engineers can apply to everyday problems in the field. Originally published in Korean as a textbook, this highly practical updated version features the latest information on the control of electric machines and apparatus, as well as a new chapter on sensorless control of AC machines, a topic not covered in any other publication. The book begins by explaining the features of the electric drive system and trends of development in related technologies, as well as the basic structure and operation principles of the electric machine. It also addresses steady state characteristics and control of the machines and the transformation of physical variables of AC machines using reference frame theory in order to provide a proper foundation for the material. The heart of the book reviews several control algorithms of electric machines and power converters, explaining active damping and how to regulate current, speed, and position in a feedback manner. Seung-Ki Sul introduces tricks to enhance the control performance of the electric machines, and the algorithm to detect the phase angle of an AC source and to control DC link voltages of power converters. Topics also covered are: Vector control Control algorithms for position/speed sensorless drive of AC machines Methods for identifying the parameters of electric machines and power converters The matrix algebra to model a three-phase AC machine in d-q-n axes Every chapter features exercise problems drawn from actual industry experience. The book also includes more than 300 figures and offers access to an FTP site, which provides MATLAB programs for selected problems. The book's practicality and realworld relatability make it an invaluable resource for professionals and engineers involved in the research and development of electric machine drive business, industrial drive designers, and senior undergraduate and graduate students. To obtain instructor materials please send an email to pressbooks@ieee.org To visit this book's FTP site to download MATLAB codes, please click on this link: ftp://ftp.wiley.com/public/sci_tech_med/electric_machine/ MATLAB codes are also downloadable from Wiley Booksupport Site at http://booksupport.wiley.com

Control of Foodborne Microorganisms

by Vijay K. Juneja John N. Sofos

Presents the latest research in the control of foodborne pathogens. Emphasizes traditional and emerging techniques as well as current applications for the inactivation of microorganisms to reduce illness and enhance food safety and quality.

Control of Fuel Combustion in Boilers (Studies in Systems, Decision and Control #287)

by Artur O. Zaporozhets

This book examines key issues in improving the efficiency of small and medium power boiler units by adding control systems for the fuel combustion process. The original models, algorithms, software and hardware of the system developed for controlling the fuel combustion process are presented. In turn, the book presents a methodology for assessing the influence of climatic factors on the combustion process, and proposes new methods for measuring the thermophysical characteristics, which require taking into account the concentration of oxygen in the air. The system developed here was implemented on a boiler of the NIISTU-5 type, which is widely used for heat power engineering in Ukraine and other Eastern European countries. Given its scope, the book offers a valuable asset for researchers and engineers, as well as lecturers and graduate students at higher education institutions dealing with heat engineering equipment.

Control of Ground and Aerial Robots (Intelligent Systems, Control and Automation: Science and Engineering #103)

by Mario Sarcinelli-Filho Ricardo Carelli

The focus of this book is kinematic and dynamic control of a single mobile robot or a group of them. New simple and integrated solutions are presented for tasks of positioning, trajectory tracking and path following. Control of Ground and Aerial Robots synthesizes new results on control of mobile robots developed by M.Sc. and Ph.D. students supervised by the authors. The robots considered are wheeled mobile platforms, with emphasis on differential drive vehicles, and the multirotor aerial robots. Integrated control solutions based on the technique of feedback linearization are proposed to guide either a single robot or a homogeneous/heterogeneous group of mobile robots. Examples on the use of the proposed controllers are also provided. Finally, Control of Ground and Aerial Robots is intended to help graduate and advanced undergraduate students in engineering, as well as researchers in the area of robot control, to design controllers to autonomously guide the more common mobile platforms.

Control of Integral Processes with Dead Time (Advances in Industrial Control)

by Antonio Visioli Qingchang Zhong

Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: How to tune a PID controller and assess its performance; How to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; How to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives.

Control of Large Wind Energy Systems: Theory and Methods for the User (Advances in Industrial Control)

by Adrian Gambier

Wind energy systems are central contributors to renewable energy generation, and their technology is continuously improved and updated. Without losing sight of theory, Control of Large Wind Energy Systems demonstrates how to implement concrete control systems for modern wind turbines, explaining the reasons behind choices and decisions. This book provides an extended treatment of different control topics divided into three thematic parts including modelling, control and implementation. Solutions for real-life difficulties such as multi-parameter tuning of several controllers, curve fitting of nonlinear power curves, and filter design for concrete signals are also undertaken. Examples and a case study are included to illustrate the parametrization of models, the control systems design with problems and possible solutions. Advice for the selection of control laws, calculation of specific parameters, which are necessary for the control laws, as the sensitivity functions, is given, as well as an evaluation of control performance based on indices and load calculation. Control of Large Wind Energy Systems covers methodologies which are not usually found in literature on this topic, including fractional order PID and nonlinear PID for pitch control, peak shaving control and extremum seeking control for the generator control, yaw control and shutdown control. This makes it an ideal book for postgraduate students, researchers and industrial engineers in the field of wind turbine control. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Control of Linear Parameter Varying Systems with Applications

by Carsten W. Scherer Javad Mohammadpour

Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.

Control of Marine Vehicles (Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping #9)

by Karl Dietrich von Ellenrieder

This textbook offers a comprehensive introduction to the control of marine vehicles, from fundamental to advanced concepts, including robust control techniques for handling model uncertainty, environmental disturbances, and actuator limitations. Starting with an introductory chapter that extensively reviews automatic control and dynamic modeling techniques for ocean vehicles, the first part of the book presents in-depth information on the analysis and control of linear time invariant systems. The concepts discussed are developed progressively, providing a basis for understanding more complex techniques and stimulating readers’ intuition. In addition, selected examples illustrating the main concepts, the corresponding MATLAB® code, and problems are included in each chapter. In turn, the second part of the book offers comprehensive coverage on the stability and control of nonlinear systems. Following the same intuitive approach, it guides readers from the fundamentals to more advanced techniques, which culminate in integrator backstepping, adaptive and sliding mode control. Leveraging the author’s considerable teaching and research experience, the book offers a good balance of theory and stimulating questions. Not only does it provide a valuable resource for undergraduate and graduate students; it will also benefit practitioners who want to review the foundational concepts underpinning some of the latest advanced marine vehicle control techniques, for use in their own applications.

Control of Mechatronic Systems: Model-Driven Design and Implementation Guidelines

by Patrick O. Kaltjob

A practical methodology for designing integrated automation control for systems and processes Implementing digital control within mechanical-electronic (mechatronic) systems is essential to respond to the growing demand for high-efficiency machines and processes. In practice, the most efficient digital control often integrates time-driven and event-driven characteristics within a single control scheme. However, most of the current engineering literature on the design of digital control systems presents discrete-time systems and discrete-event systems separately. Control Of Mechatronic Systems: Model-Driven Design And Implementation Guidelines unites the two systems, revisiting the concept of automated control by presenting a unique practical methodology for whole-system integration. With its innovative hybrid approach to the modeling, analysis, and design of control systems, this text provides material for mechatronic engineering and process automation courses, as well as for self-study across engineering disciplines. Real-life design problems and automation case studies help readers transfer theory to practice, whether they are building single machines or large-scale industrial systems. Presents a novel approach to the integration of discrete-time and discrete-event systems within mechatronic systems and industrial processes Offers user-friendly self-study units, with worked examples and numerous real-world exercises in each chapter Covers a range of engineering disciplines and applies to small- and large-scale systems, for broad appeal in research and practice Provides a firm theoretical foundation allowing readers to comprehend the underlying technologies of mechatronic systems and processes Control Of Mechatronic Systems is an important text for advanced students and professionals of all levels engaged in a broad range of engineering disciplines.

Control of Microstructures and Properties in Steel Arc Welds (Materials Science & Technology #1)

by Lars-Erik Svensson

Control of Microstructures and Properties in Steel Arc Welds provides an overview of the most recent developments in welding metallurgy. Topics discussed include common welding processes, the thermal cycle during welding, defects that may occur during the welding process, the metallurgy of the material, metallurgical processes in the heat-affected zone and the fused metal, and the relationship between microstructures and mechanical properties. The book's final chapter presents examples of welded joints, illustrating how modern theories are capable of predicting the microstructure and properties of these joints. This book is an excellent resource for welding engineers, metallurgists, materials scientists, and others interested in the subject.

Control of Multi-agent Systems: Theory and Simulations with Python (Advanced Textbooks in Control and Signal Processing)

by Hyo-Sung Ahn Shun-Ichi Azuma Masaaki Nagahara

This textbook teaches control theory for multi-agent systems. Readers will learn the basics of linear algebra and graph theory, which are then developed to describe and solve multi-agent control problems. The authors address important and fundamental problems including: • consensus control; • coverage control; • formation control; • distributed optimization; and • the viral spreading phenomenon. Students' understanding of the core theory for multi-agent control is enhanced through worked examples and programs in the popular Python language. End-of-chapter exercises are provided to help assess learning progress. Instructors who adopt the book for their courses can download a solutions manual and the figures in the book for lecture slides. Additionally, the Python programs are available for download and can be used for experiments by students in advanced undergraduate or graduate courses based on this text. The broad spectrum of applications relevant to this material includes the Internet of Things, cyber-physical systems, robot swarms, communications networks, smart grids, and truck platooning. Additionally, in the spheres of social science and public health, it applies to opinion dynamics and the spreading of viruses in social networks. Students interested in learning about such applications, or in pursuing further research in multi-agent systems from a theoretical perspective, will find much to gain from Control of Multi-agent Systems. Instructors wishing to teach the subject will also find it beneficial.

Control of Multiple Robots Using Vision Sensors (Advances in Industrial Control)

by Carlos Sagüés Miguel Aranda Gonzalo López-Nicolás

This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images; a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs; an algorithm to recover a generic motion between two 1-d views and which does not require a third view; a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and control a formation of ground mobile robots; and three coordinate-free methods for decentralized mobile robot formation stabilization. The performance of the different methods is evaluated both in simulation and experimentally with real robotic platforms and vision sensors. Control of Multiple Robots Using Vision Sensors will serve both academic researchers studying visual control of single and multiple robots and robotics engineers seeking to design control systems based on visual sensors.

Control of Noise and Structural Vibration: A MATLAB®-Based Approach

by Qibo Mao Stanislaw Pietrzko

Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double walls. Sensor and actuator placement is explained as is the idea of modal sensor-actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Positive position feedback (PPF) and multimode control are also described in the context of loudspeaker-duct and loudspeaker-microphone models. The design of various components is detailed including the analog circuit for PPF, adaptive (semi-active) Helmholtz resonators and shunt piezoelectric circuits for noise and vibration suppression. The text makes extensive use of MATLAB® examples and these can be simulated using files available for download from the book's webpage at springer.com. End-of-chapter exercises will help readers to assimilate the material as they progress through the book. Control of Noise and Structural Vibration will be of considerable interest to the student of vibration and noise control and also to academic researchers working in the field. It's tutorial features will help practitioners who wish to update their knowledge with self-study.

Refine Search

Showing 14,126 through 14,150 of 68,764 results