- Table View
- List View
Das Theater der Elektrizität: Technologie und Spektakel im ausgehenden 19. Jahrhundert (Szene & Horizont. Theaterwissenschaftliche Studien #6)
by Ulf OttoDas Theater der Moderne gründet sich auf ästhetische Energien. Seit den 1880er Jahren aber sind es elektrische Energien, aus fossilen Brennstoffen in Kraftwerken erzeugt, die im Theater zu zirkulieren beginnen. Installiert wird eine mysteriöse Entität, die noch als Lebenskraft gehandelt wird und schon für Fortschritt durch Technik steht. Mit der Elektrifizierung des Theaters wird Elektroindustrie respektabel und Bühnenkunst modernistisch. Entsorgt werden die Kulissen, die im Scheinwerferlicht nur noch verstaubt erscheinen, und aus der Bildermaschine wird Raumkunst. Doch wichtiger sind die institutionellen Transformationen, die sich in bislang unbeachteten Koalitionen, Kontinuitäten und Konkurrenzen von technischen und ästhetischen Dingen abspielen. Ingenieurswissen, Kontrolltechniken und Versorgungssysteme ändern, wie Theater und Gesellschaft verschaltet sind. Der Interaktionsraum (zwischen-)menschlicher Leiblichkeit des 20. Jahrhunderts entpuppt sich als eine technische Konstellation.
Data: New Trajectories in Law (New Trajectories in Law)
by Robert HerianThis book explores the phenomenon of data – big and small – in the contemporary digital, informatic and legal-bureaucratic context. Challenging the way in which legal interest in data has focused on rights and privacy concerns, this book examines the contestable, multivocal and multifaceted figure of the contemporary data subject. The book analyses "data" and "personal data" as contemporary phenomena, addressing the data realms, such as stores, institutions, systems and networks, out of which they emerge. It interrogates the role of law, regulation and governance in structuring both formal and informal definitions of the data subject, and disciplining data subjects through compliance with normative standards of conduct. Focusing on the ‘personal’ in and of data, the book pursues a re-evaluation of the nature, role and place of the data subject qua legal subject in on and offline societies: one that does not begin and end with the inviolability of individual rights but returns to more fundamental legal principles suited to considerations of personhood, such as stewardship, trust, property and contract. The book’s concern with the production, use, abuse and alienation of personal data within the context of contemporary communicative capitalism will appeal to scholars and students of law, science and technology studies, and sociology; as well as those with broader political interests in this area.
Data Acquisition and Process Control Using Personal Computers
by Ozkul""Covers all areas of computer-based data acquisition--from basic concepts to the most recent technical developments--without the burden of long theoretical derivations and proofs. Offers practical, solution-oriented design examples and real-life case studies in each chapter and furnishes valuable selection guides for specific types of hardware.
Data Acquisition Systems: From Fundamentals to Applied Design
by Maurizio Di Paolo EmilioThis book describes the fundamentals of data acquisition systems, how they enable users to sample signals that measure real physical conditions and convert the resulting samples into digital, numeric values that can be analyzed by a computer. The author takes a problem-solving approach to data acquisition, providing the tools engineers need to use the concepts introduced. Coverage includes sensors that convert physical parameters to electrical signals, signal conditioning circuitry to convert sensor signals into a form that can be converted to digital values and analog-to-digital converters, which convert conditioned sensor signals to digital values. Readers will benefit from the hands-on approach, culminating with data acquisition projects, including hardware and software needed to build data acquisition systems.
Data Action: Using Data for Public Good
by Sarah WilliamsHow to use data as a tool for empowerment rather than oppression.Big data can be used for good--from tracking disease to exposing human rights violations--and for bad--implementing surveillance and control. Data inevitably represents the ideologies of those who control its use; data analytics and algorithms too often exclude women, the poor, and ethnic groups. In Data Action, Sarah Williams provides a guide for working with data in more ethical and responsible ways. Too often data has been used--and manipulated--to make policy decisions without much stakeholder input. Williams outlines a method that emphasizes collaboration among data scientists, policy experts, data designers, and the public. This approach creates trust and co-ownership in the data by opening the process to those who know the issues best.
Data Analysis and Optimization for Engineering and Computing Problems: Proceedings of the 3rd EAI International Conference on Computer Science and Engineering and Health Services (EAI/Springer Innovations in Communication and Computing)
by Pandian Vasant Igor Litvinchev Jose Antonio Marmolejo-Saucedo Roman Rodriguez-Aguilar Felix Martinez-RiosThis book presents the proceedings of The EAI International Conference on Computer Science: Applications in Engineering and Health Services (COMPSE 2019). The conference highlighted the latest research innovations and applications of algorithms designed for optimization applications within the fields of Science, Computer Science, Engineering, Information Technology, Management, Finance and Economics and Health Systems. Focusing on a variety of methods and systems as well as practical examples, this conference is a significant resource for post graduate-level students, decision makers, and researchers in both public and private sectors who are seeking research-based methods for modelling uncertain and unpredictable real-world problems.
Data Analysis and Pattern Recognition in Multiple Databases (Intelligent Systems Reference Library #61)
by Witold Pedrycz Animesh Adhikari Jhimli AdhikariPattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
Data Analysis and Statistics for Geography, Environmental Science, and Engineering
by Miguel F. AcevedoProviding a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain
Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning
by Heinz Pitsch Antonio AttiliThis book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.
Data Analysis for Neurodegenerative Disorders (Cognitive Technologies)
by Deepika Koundal Deepak Kumar Jain Yanhui Guo Amira S. Ashour Atef ZaguiaThis book explores the challenges involved in handling medical big data in the diagnosis of neurological disorders. It discusses how to optimally reduce the number of neuropsychological tests during the classification of these disorders by using feature selection methods based on the diagnostic information of enrolled subjects. The book includes key definitions/models and covers their applications in different types of signal/image processing for neurological disorder data. An extensive discussion on the possibility of enhancing the abilities of AI systems using the different data analysis is included. The book recollects several applicable basic preliminaries of the different AI networks and models, while also highlighting basic processes in image processing for various neurological disorders. It also reports on several applications to image processing and explores numerous topics concerning the role of big data analysis in addressing signal and image processing in various real-world scenarios involving neurological disorders.This cutting-edge book highlights the analysis of medical data, together with novel procedures and challenges for handling neurological signals and images. It will help engineers, researchers and software developers to understand the concepts and different models of AI and data analysis. To help readers gain a comprehensive grasp of the subject, it focuses on three key features:● Presents outstanding concepts and models for using AI in clinical applications involving neurological disorders, with clear descriptions of image representation, feature extraction and selection.● Highlights a range of techniques for evaluating the performance of proposed CAD systems for the diagnosis of neurological disorders.● Examines various signal and image processing methods for efficient decision support systems. Soft computing, machine learning and optimization algorithms are also included to improve the CAD systems used.
Data Analytics: Handbook of Formulas and Techniques (Systems Innovation Book Series)
by Adedeji B. BadiruGood data analytics is the basis for effective decisions. Whoever has the data, has the ability to extract information promptly and effectively to make pertinent decisions. The premise of this handbook is to empower users and tool developers with the appropriate collection of formulas and techniques for data analytics and to serve as a quick reference to keep pertinent formulas within fingertip reach of readers. This handbook includes formulas that will appeal to mathematically inclined readers. It discusses how to use data analytics to improve decision-making and is ideal for those new to using data analytics to show how to expand their usage horizon. It provides quantitative techniques for modeling pandemics, such as COVID-19. It also adds to the suite of mathematical tools for emerging technical areas. This handbook is a handy reference for researchers, practitioners, educators, and students in areas such as industrial engineering, production engineering, project management, civil engineering, mechanical engineering, technology management, and business management worldwide.
Data Analytics: Proceedings Of 4th Conference On Sustainable Urban Mobility (csum2018), 24 - 25 May, Skiathos Island, Greece (Advances In Intelligent Systems and Computing #879)
by Eftihia G. Nathanail Ioannis D. KarakikesThis book aims at showing how big data sources and data analytics can play an important role in sustainable mobility. It is especially intended to provide academicians, researchers, practitioners and decision makers with a snapshot of methods that can be effectively used to improve urban mobility. The different chapters, which report on contributions presented at the 4th Conference on Sustainable Urban Mobility, held on May 24-25, 2018, in Skiathos Island, Greece, cover different thematic areas, such as social networks and traveler behavior, applications of big data technologies in transportation and analytics, transport infrastructure and traffic management, transportation modeling, vehicle emissions and environmental impacts, public transport and demand responsive systems, intermodal interchanges, smart city logistics systems, data security and associated legal aspects. They show in particular how to apply big data in improving urban mobility, discuss important challenges in developing and implementing analytics methods and provide the reader with an up-to-date review of the most representative research on data management techniques for enabling sustainable urban mobility
Data Analytics and Adaptive Learning: Research Perspectives
by Patsy D. Moskal, Charles D. Dziuban, and Anthony G. PiccianoData Analytics and Adaptive Learning offers new insights into the use of emerging data analysis and adaptive techniques in multiple learning settings. In recent years, both analytics and adaptive learning have helped educators become more responsive to learners in virtual, blended, and personalized environments. This set of rich, illuminating, international studies spans quantitative, qualitative, and mixed-methods research in higher education, K–12, and adult/continuing education contexts. By exploring the issues of definition and pedagogical practice that permeate teaching and learning and concluding with recommendations for the future research and practice necessary to support educators at all levels, this book will prepare researchers, developers, and graduate students of instructional technology to produce evidence for the benefits and challenges of data-driven learning.
Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing (Advances in Intelligent Decision-Making, Systems Engineering, and Project Management)
by Amit Kumar Tyagi Shrikant Tiwari Gulshan SoniToday, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries.Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning.Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications (Studies in Big Data #132)
by Gilberto Rivera Laura Cruz-Reyes Bernabé Dorronsoro Alejandro RoseteIn the age of transformative artificial intelligence (AI), which has the potential to revolutionize our lives, this book provides a comprehensive exploration of successful research and applications in AI and data analytics. Covering innovative approaches, advanced algorithms, and data analysis methodologies, this book addresses complex problems across topics such as machine learning, pattern recognition, data mining, optimization, and predictive modeling. With clear explanations, practical examples, and cutting-edge research, this book seeks to expand the understanding of a wide readership, including students, researchers, practitioners, and technology enthusiasts eager to explore these exciting fields. Featuring real-world applications in education, health care, climate modeling, cybersecurity, smart transportation, conversational systems, and material analysis, among others, this book highlights how these technologies can drive innovation and generate competitive advantages.
Data Analytics and Learning: Proceedings of DAL 2022 (Lecture Notes in Networks and Systems #779)
by D. S. Guru N. Vinay Kumar Mohammed JavedThis book presents new theories and working models in the areas of data analytics and learning. The papers included in this volume were presented at the second International Conference on Data Analytics and Learning (DAL 2022), which was organized by the Department of Computer Science & Engineering, Alva’s Institute of Engineering & Technology, Moodbidri, Mangalore, Karnataka, India in association with the Department of Studies in Computer Science, University of Mysore, Mysuru, Karnataka, India. The areas covered include pattern recognition, image processing, deep learning, computer vision, data analytics, machine learning, artificial intelligence, and intelligent systems.
Data Analytics and Learning: Proceedings of Dal 2018 (Lecture Notes in Networks and Systems #43)
by P. Nagabhushan D. S. Guru B. H. Shekar Y. H. Sharath KumarThis paper describes a method to localize and recognize seven-segment displays on digital energy meters. Color edge detection is first performed on a camera-captured image of the device which is then followed by a run-length technique to detect horizontal and vertical lines. The region of interest circumscribing the LCD panel is determined based on the attributes of intersecting horizontal and vertical lines. The extracted display region is preprocessed using the morphological black-hat operation to enhance the text strokes. Adaptive thresholding is then performed and the digits are segmented based on stroke features. Finally, the segmented digits are recognized using a support vector machine classifier trained on a set of syntactic rules defined for the seven-segment font. The proposed method can handle images exhibiting uneven illumination, the presence of shadows, poor contrast, and blur, and yields a recognition accuracy of 97% on a dataset of 175 images of digital energy meters captured using a mobile camera.
Data Analytics and Machine Learning for Integrated Corridor Management
by Yashawi Karnati Dhruv Mahajan Tania Banerjee Rahul Sengupta Packard Clay Ryan Casburn Nithin Agarwal Jeremy Dilmore Anand Rangarajan Sanjay RankaIn an era defined by rapid urbanization and ever-increasing mobility demands, effective transportation management is paramount. This book takes readers on a journey through the intricate web of contemporary transportation systems, offering unparalleled insights into the strategies, technologies, and methodologies shaping the movement of people and goods in urban landscapes.From the fundamental principles of traffic signal dynamics to the cutting-edge applications of machine learning, each chapter of this comprehensive guide unveils essential aspects of modern transportation management systems. Chapter by chapter, readers are immersed in the complexities of traffic signal coordination, corridor management, data-driven decision-making, and the integration of advanced technologies. Closing with chapters on modeling measures of effectiveness and computational signal timing optimization, the guide equips readers with the knowledge and tools needed to navigate the complexities of modern transportation management systems.With insights into traffic data visualization and operational performance measures, this book empowers traffic engineers and administrators to design 21st-century signal policies that optimize mobility, enhance safety, and shape the future of urban transportation.
Data Analytics and Management: Proceedings of ICDAM (Lecture Notes on Data Engineering and Communications Technologies #54)
by Ashish Khanna Deepak Gupta Zdzisław Pólkowski Siddhartha Bhattacharyya Oscar CastilloThis book includes original unpublished contributions presented at the International Conference on Data Analytics and Management (ICDAM 2020), held at Jan Wyzykowski University, Poland, during June 2020. The book covers the topics in data analytics, data management, big data, computational intelligence, and communication networks. The book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students.
Data Analytics and Visualization in Quality Analysis using Tableau
by Jaejin Hwang Youngjin YoonData Analytics and Visualization in Quality Analysis using Tableau goes beyond the existing quality statistical analysis. It helps quality practitioners perform effective quality control and analysis using Tableau, a user-friendly data analytics and visualization software. It begins with a basic introduction to quality analysis with Tableau including differentiating factors from other platforms. It is followed by a description of features and functions of quality analysis tools followed by step-by-step instructions on how to use Tableau. Further, quality analysis through Tableau based on open source data is explained based on five case studies. Lastly, it systematically describes the implementation of quality analysis through Tableau in an actual workplace via a dashboard example. Features: Describes a step-by-step method of Tableau to effectively apply data visualization techniques in quality analysis Focuses on a visualization approach for practical quality analysis Provides comprehensive coverage of quality analysis topics using state-of-the-art concepts and applications Illustrates pragmatic implementation methodology and instructions applicable to real-world and business cases Include examples of ready-to-use templates of customizable Tableau dashboards This book is aimed at professionals, graduate students and senior undergraduate students in industrial systems and quality engineering, process engineering, systems engineering, quality control, quality assurance and quality analysis.
Data Analytics Applied to the Mining Industry
by Ali SoofastaeiData Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors
Data Analytics Approaches in Educational Games and Gamification Systems (Smart Computing and Intelligence)
by Ahmed Tlili Maiga ChangGame-based learning environments and learning analytics are attracting increasing attention from researchers and educators, since they both can enhance learning outcomes. This book focuses on the application of data analytics approaches and research on human behaviour analysis in game-based learning environments, namely educational games and gamification systems, to provide smart learning. Specifically, it discusses the purposes, advantages and limitations of applying such approaches in these environments. Additionally, the various smart game-based learning environments presented help readers integrate learning analytics in their educational games and gamification systems to, for instance, assess and model students (e.g. their computational thinking) or enhance the learning process for better outcomes. Moreover, the book presents general guidelines on various aspects, such as collecting data for analysis, game-based learning environment design, system architecture and applied algorithms, which facilitate incorporating learning analytics into educational games and gamification systems.After a general introduction to help readers become familiar with the subject area, the individual chapters each discuss a different aim of applying data analytics approaches in educational games and gamification systems. Lastly, the conclusion provides a summary and presents general guidelines and frameworks to consider when designing smart game-based learning environments with learning analytics.
Data Analytics-Based Demand Profiling and Advanced Demand Side Management for Flexible Operation of Sustainable Power Networks (Springer Theses)
by Jelena PonoćkoThis thesis deals with two important and very timely aspects of the future power system operation - assessment of demand flexibility and advanced demand side management (DSM) facilitating flexible and secure operation of the power network. It provides a clear and comprehensive literature review in these two areas and states precisely the original contributions of the research. The book first demonstrates the benefits of data mining for a reliable assessment of demand flexibility and its composition even with very limited observability of the end-users. It then illustrates the importance of accurate load modelling for efficient application of DSM and considers different criteria in designing DSM programme to achieve several objectives of the network performance simultaneously. Finally, it demonstrates the importance of considering realistic assumptions when planning and estimating the success of DSM programs.The findings presented here have both scientific and practical significance; they gained her BSc and MSc degrees in electrical engineering from the University of Belgrade in 2011 and 2012 respectively. She graduated with her PhD from the University of Manchester. She has presented at several conferences, and has won runner-up prizes in poster presentation at three. She has authored or co-authored more than 40 journal, conference and technical papers.provide a basis for further research, and can be used to guide future applications in industry.
Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications
by Debabrata Samanta Sk Hafizul Islam Naveen Chilamkurti Mohammad HammoudehWith the rapidly advancing fields of Data Analytics and Computational Statistics, it’s important to keep up with current trends, methodologies, and applications. This book investigates the role of data mining in computational statistics for machine learning. It offers applications that can be used in various domains and examines the role of transformation functions in optimizing problem statements. Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques, and survival analysis models. It discusses how data mining extracts information and how machine learning improves the computational model based on the new information. Those interested in this reference work will include students, professionals, and researchers working in the areas of data mining, computational statistics, operations research, and machine learning.
Data Analytics for Cultural Heritage: Current Trends and Concepts
by Abdelhak Belhi Abdelaziz Bouras Abdulaziz Khalid Al-Ali Abdul Hamid SadkaThis book considers the challenges related to the effective implementation of artificial intelligence (AI) and machine learning (ML) technologies to the cultural heritage digitization process. Particular focus is placed on improvements to the data acquisition stage, as well as the data enrichment and curation stages, using advanced artificial intelligence techniques and tools. An emphasis is placed on recent applications related to deep learning for visual recognition, generative models, natural language processing, and super resolution. The book is a valuable reference for researchers working in the multidisciplinary field of cultural heritage and AI, as well as professional experts in the art and culture domains, such as museums, libraries, and historic sites and buildings. Reports on techniques and methods that leverage AI and machine learning and their impact on the digitization of cultural heritage; Addresses challenges of improving data acquisition, enrichment and management processes;Highlights contributions from international researchers from diverse fields and subject areas.