Browse Results

Showing 15,776 through 15,800 of 65,066 results

The Design of Learning Experience

by Brad Hokanson Gregory Clinton Monica W. Tracey

This book delves into two divergent, yet parallel themes; first is an examination of how educators can design the experiences of learning, with a focus on the learner and the end results of education; and second, how educators learn to design educational products, processes and experiences. The book seeks to understand how to design how learning occurs, both in the instructional design studio and as learning occurs throughout the world. This will change the area's semantics; at a deeper level, it will change its orientation from instructors and information to learners; and it will change how educators take advantage of new and old technologies. This book is the result of a research symposium sponsored by the Association for Educational Communications and Technology [AECT].

Design of Linear Multivariable Feedback Control Systems: The Wiener–Hopf Approach using Transforms and Spectral Factorization

by Joseph J. Bongiorno Jr. Kiheon Park

This book contains a derivation of the subset of stabilizing controllers for analog and digital linear time-invariant multivariable feedback control systems that insure stable system errors and stable controller outputs for persistent deterministic reference inputs that are trackable and for persistent deterministic disturbance inputs that are rejectable. For this subset of stabilizing controllers, the Wiener-Hopf methodology is then employed to obtain the optimal controller for which a quadratic performance measure is minimized. This is done for the completely general standard configuration and methods that enable the trading off of optimality for an improved stability margin and/or reduced sensitivity to plant model uncertainty are described. New and novel results on the optimal design of decoupled (non-interacting) systems are also presented. The results are applied in two examples: the one- and three-degree-of-freedom configurations. These demonstrate that the standard configuration is one encompassing all possible feedback configurations. Each chapter is completed by a group of worked examples, which reveal additional insights and extensions of the theory presented in the chapter. Three of the examples illustrate the application of the theory to two physical cases: the depth and pitch control of a submarine and the control of a Rosenbrock process. In the latter case, designs with and without decoupling are compared. This book provides researchers and graduate students working in feedback control with a valuable reference for Wiener–Hopf theory of multivariable design. Basic knowledge of linear systems and matrix theory is required.

Design of Long Span Railway Suspension Bridges

by Gongyi Xu

This book presents the latest practices in high-speed railway suspension bridge design, covering site selection, bridge type and span layout, loading assumptions and load combinations, structural stiffness, structural components, expansion joints, wind resistance, and seismic analysis. It also shares insights on the wind-train-track-bridge interaction, wind and seismic analysis and design, and provides solutions for construction and maintenance. Wufengshan Yangtze River Bridge was taken as an example to introduce the key technologies of long-span high-speed railway suspension bridges in research, design, construction, and maintenance comprehensively.This is an ideal guideline and reference book for bridge engineers and consultants engaged in research, design, construction, and maintenance of suspension bridges. It can also be adopted as a textbook for teachers and students of bridge engineering in the teaching of suspension bridges.

Design of Low Power and Low Area Passive Sigma Delta Modulators for Audio Applications

by David Fouto Nuno Paulino

This book presents the study, design, modulation, optimization and implementation of low power, passive DT-ΣΔMs for use in audio applications. The high gain and bandwidth amplifier normally used for integration in ΣΔ modulation, is replaced by passive, switched-capacitor branches working under the Ultra Incomplete Settling (UIS) condition, leading to a reduction of the consumed power. The authors describe a design process that uses high level models and an optimization process based in genetic algorithms to achieve the desired performance.

Design of Low Power Integrated Radios for Emerging Standards (Analog Circuits and Signal Processing)

by Mustafijur Rahman Ramesh Harjani

This book describes novel and disruptive architecture and circuit design techniques, toward the realization of low-power, standard-compliant radio architectures and silicon implementation of the circuits required for a variety of leading-edge applications. Readers will gain an understanding of the circuit level challenges that exist for low power radios, compatible with the IEEE 802.15.6 standard. The authors discuss current techniques to address some of these challenges, helping readers to understand the state-of-the-art, and to address the various, open research problems that exist with respect to realizing low power radios.Enables readers to face challenging bottleneck in low power radio design, with state-of-the-art, circuit-level design techniques;Provides readers with basic knowledge of circuits suitable for low power radio circuits compatible with the IEEE 802.15.6 standard;Discusses new and emerging architectures and circuit techniques, enabling applications such as body area networks and internet of things.

Design of Masonry Structures

by A. W. Hendry B. P. Sinha S. R. Davies

This edition has been fully revised and extended to cover blockwork and Eurocode 6 on masonry structures. This valued textbook:Discusses all aspects of design of masonry structures in plain and reinforced masonry.summarizes materials properties and structural principles as well as describing structure and content of codes.Presents design procedures

Design of Materials and Technologies for Environmental Remediation (The Handbook of Environmental Chemistry #115)

by Shunitz Tanaka Masaaki Kurasaki Masaaki Morikawa Yuichi Kamiya

This book describes environmental remediation technologies to remove pollutants from the environment and the environmental materials used for remediation. The focus is on the functional design of environmental materials, especially to create materials for coping with a variety of pollutants in different concentrations and conditions. The authors present research highlights from their work in this area and aim to inspire the development of new concepts in environmental remediation. This work is a must-read for practitioners who are exploring restoration technologies and materials for solving environmental pollution as well as researchers and graduate students studying environmental remediation. A number of Asian researchers who have been engaged in these studies are among the authors, and this book will contribute to solving pollution problems in Asia as well as the rest of the world.

Design of Mechanical Elements: A Concise Introduction to Mechanical Design Considerations and Calculations

by Bart Raeymaekers

Provides a student-friendly approach for building the skills required to perform mechanical design calculations Design of Mechanical Elements offers an accessible introduction to mechanical design calculations. Written for students encountering the subject for the first time, this concise textbook focuses on fundamental concepts, problem solving, and methodical calculations of common mechanical components, rather than providing a comprehensive treatment of a wide range of components. Each chapter contains a brief overview of key terminology, a clear explanation of the physics underlying the topic, and solution procedures for typical mechanical design and verification problems. The textbook is divided into three sections, beginning with an overview of the mechanical design process and coverage of basic design concepts including material selection, statistical considerations, tolerances, and safety factors. The next section discusses strength of materials in the context of design of mechanical elements, illustrating different types of static and dynamic loading problems and their corresponding failure criteria. In the concluding section, students learn to combine and apply these concepts and techniques to design specific mechanical elements including shafts, bolted and welded joints, bearings, and gears. Provides a systematic “recipe” students can easily apply to perform mechanical design calculations Illustrates theoretical concepts and procedures for solving mechanical design problems with numerous solved examples Presents easy-to-understand explanations of the considerations and assumptions central to mechanical design Includes end-of-chapter practice problems that strengthen the understanding of calculation techniquesSupplying the basic skills and knowledge necessary for methodically performing basic mechanical design calculations, Design of Mechanical Elements: A Concise Introduction to Mechanical Design Considerations and Calculations is the perfect primary textbook for single-semester undergraduate mechanical design courses.

Design of Mechanical Systems Based on Statistics: A Guide to Improving Product Reliability (Advanced Research in Reliability and System Assurance Engineering)

by Seong-woo Woo

This book introduces and explains the parametric accelerated life testing (ALT) methodology as a new reliability methodology based on statistics, to help avoid recalls of products in the marketplace. The book includes problems and case studies to help with reader comprehension. It provides an introduction to reliability design of the mechanical system as an alternative to Taguchi’s experimental methodology and enables engineers to correct faulty designs and determine if the targeted product reliability is achieved. Additionally, it presents a robust design methodology of mechanical products to withstand a variety of loads. This book is intended for engineers of many fields, including industrial engineers, mechanical engineers, and systems engineers.

Design of Metallic Cold-Formed Thin-Walled Members

by Aurelio Ghersi Raffaele Landolfo Federico Mazzolani

This design handbook, with a free windows-based computer programme on CD-ROM, allows the user to easily evaluate the strength of a cross-section and the buckling resistance of steel and aluminium members. Highlighting the theoretical basis of problems and the design approach necessary to overcome them, it comprehansively covers design to Eurocode 9

Design of Microwave Active Devices

by Jean-Luc Gautier

This book presents methods for the design of the main microwave active devices. The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier. Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement. Frequency transposition is the subject of Chapter 3. The author presents the operating principle as well as the different topologies using transistors and diodes. Chapter 4 is dedicated to the operation of fixed frequency and tunable oscillators such as the voltage controlled oscillator (VCO) and the yttrium iron garnet (YIG). The final chapter presents the main control functions, i.e. attenuators, phase shifters and switches.

Design of Miniaturized Variable-Capacitance Electrostatic Energy Harvesters

by Seyed Hossein Daneshvar Mehmet Rasit Yuce Jean-Michel Redouté

This book provides readers with an overview of kinetic energy harvesting systems, their applications, and a detailed discussion of circuit design of variable-capacitance electrostatic harvesters. The authors describe challenges that need to be overcome when designing miniaturized kinetic energy harvesting systems, along with practical design considerations demonstrated through case studies of developing electrostatic energy harvesting systems.The book also,Discusses the subject of Miniaturized Variable-Capacitance Electrostatic Energy Harvesters from both a theoretical and practical/experimental point of view.Describes detailed circuit designs for developing miniaturized electrostatic harvesters.Includes a comprehensive comparison framework for evaluating electrostatic harvesters, enabling readers to select which harvesters are best suited for a particular application.

Design Of Mission Operations Systems For Scientific Remote Sensing

by S D Wall K W Ledbetter

A definitive description of the various models of mission operations systems MOS which provides an account of the design process and of the general principles of the designs themselves. The principles described can be applied to all types of scientific remote sensing.

Design of Multiphase Reactors

by Vishwas G. Pangarkar

Details simple design methods for multiphase reactors in the chemical process industriesIncludes basic aspects of transport in multiphase reactors and the importance of relatively reliable and simple procedures for predicting mass transfer parametersDetails of design and scale up aspects of several important types of multiphase reactorsExamples illustrated through design methodologies presenting different reactors for reactions that are industrially importantIncludes simple spreadsheet packages rather than complex algorithms / programs or computational aid

Design of Nanostructures: Self-Assembly of Nanomaterials

by Himadri B. Bohidar Kamla Rawat

Adopting a unique approach, this book provides a thorough, one-stop introduction to nanoscience and self-assembly of nanomaterials composed of such materials as metals, metal oxides, metal sulphides, polymers, and biopolymers. Clearly divided into three sections covering the main aspects of nanoscience, the first part deals with the basic principles of nanoscale science. Alongside essential approaches and forces, this section also covers thermodynamics, phase transitions, and applications to biological systems. The second and third parts then go on to provide a detailed description of the synthesis of inorganic and organic nanoparticles, respectively. With its interdisciplinary content of importance to many different branches of nanoscience, this is essential reading for material scientists, physicists, biophysical chemists, chemical engineers, and biotechnologists alike.

Design of Network Coding Schemes in Wireless Networks

by Zihuai Lin

This book provides a consolidated view of the various network coding techniques to be implemented at the design of the wireless networks for improving its overall performance. It covers multiple sources communicating with multiple destinations via a common relay followed by network coded modulation schemes for multiple access relay channels. Performance of the distributed systems based on distributed convolutional codes with network coded modulation is covered including a two-way relay channel (TWRC). Two MIF protocols are proposed including derivation of signal-to-noise ratio (SNR) and development of threshold of the channel conditions of both. Features: Systematically investigates coding and modulation for wireless relay networks. Discusses how to apply lattice codes in implementing lossless communications and lossy source coding over a network. Focusses on theoretical approach for performance optimization. Includes various network coding strategies for different networks. Reviews relevant existing and ongoing research in optimization along with practical code design. This book aims at Researchers, Professionals and Graduate students in Networking, Communications, Information, Coding Theory, Theoretical Computer Science, Performance Analysis and Resource Optimization, Applied Discrete Mathematics, and Applied Probability.

Design of New Weave Patterns

by Radostina A. Angelova

This book presents a systematic study on methods used for the creation of weave patterns for simple structures. Firstly, it explains known techniques for designing new weave patterns classified as patterns merge, motifs, patterns insertion and change of the displacement number. These are discussed as possibilities to create different textures and weaving effects supported by figures of patterns, colour view, and fabric appearance simulation. Secondly, it explains original methods for design of new weave patterns based on Boolean operations, musical scores, written texts and braille alphabet, including transformations performed, advantages/disadvantages, possible applications and designs.

Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis (Springer Theses)

by Kun Yin

This book introduces readers to the development of novel optical biosensors for environmental analysis. Environmental pollution has now become a serious problem, which threatens the health of human beings. Traditional analytical methods have a number of drawbacks, such as the need for professional operators and complicated instruments. After millions of years of evolution, biomolecules can perform various functions with good accuracy and efficiency due to their unique structures, offering a viable alternative to traditional methods. This work focuses on using new biological sensing strategies, e.g. those based on special biomaterials, bio-reactions or living cells, to establish novel biosensors. As these biosensors offer satisfactory optical response performance, they can be used to transform the recognition behavior of specific targets into optical signals and effectively detect target objects.

Design of Optimal Feedback for Structural Control

by Ido Halperin Grigory Agranovich Yuri Ribakov

Structural control is an approach aimed at the suppressing unwanted dynamic phenomena in civil structures. It proposes the use of methods and tools from control theory for the analysis and manipulation of a structure’s dynamic behavior, with emphasis on suppression of seismic and wind responses. This book addresses problems in optimal structural control. Its goal is to provide solutions and techniques for these problems by using optimal control theory. Thus, it deals with the solution of optimal control design problems related to passive and semi-active controlled structures. The formulated problems consider constraints and excitations which are common in structural control. Optimal control theory is used in order to solve these problems in a rigorous manner. Even though there are many works in this field, none comprise optimization techniques with firm theoretical background that address the solution of passive and semi-active structural control design problems. The book begins with a discussion on models which are commonly used for civil structures and control actuators. Modern theoretical notions, such as dissipativity and passivity of dynamic systems are discussed in context of the addressed problems. Optimal control theory and suitable successive methods are reviewed. Novel solutions for optimal passive and semi-active control design problems are derived, based on firm theoretical foundations. These results are verified by numerical simulations of typical civil structures which are subjected to different types of dynamic excitations.

Design of Organic Complementary Circuits and Systems on Foil

by Sahel Abdinia Arthur Van Roermund Eugenio Cantatore

This book describes new approaches to fabricate complementary organic electronics and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide.

Design of Piezo Inkjet Print Heads: From Acoustics to Applications

by J. Frits Dijksman

An integral overview of the theory and design of printheads, authored by an expert with over 30 years' experience in the field of inkjet printing. Clearly structured, the book presents the design of a printhead in a comprehensive and clear form, right from the start. To begin with, the working principle of piezo-driven drop-on-demand printheads in theory is discussed, building on the theory of mechanical vibrations and acoustics. Then the design of single-nozzle as well as multi-nozzle printheads is presented, including the importance of various parameters that need to be optimized, such as viscosity, surface tension and nozzle shape. Topics such as refilling the nozzle and the impact of the droplet on the surface are equally treated. The text concludes with a unique set of worked-out questions for training purposes as well as case studies and a look at what the future holds. An essential reference for beginning as well as experienced researchers, from ink developers to mechanical engineers, both in industry and academia.

Design of Plated Structures: Eurocode 3: Design of Steel Structures, Part 1-5: Design of Plated Structures (Essentials Ser.)

by Laurence Davaine Ulrike Kuhlmann Benjamin Braun Darko Beg

The main aim of this book is to provide practical advice to designers of plated structures for correct and efficient application of EN 1993-1-5 design rules. In chapter 1 the purpose, the scope and the structure of the book is explained. In chapter 2 a rather detailed and commented overview of EN 1993-1-5 design rules is given following the structure of the standard. Shear lag effect as well as plate buckling problems due to direct stresses, shear forces, transverse forces and interactions of these effects are covered. This chapter also includes a reduced stress method and a finite element analysis approach to plate buckling problems. A large number of design examples illustrate the proper application of individual design rules. Chapter 3 and 4 bring two complete design examples on a crane runway and a box-girder bridge.

Design of Power Management Integrated Circuits (IEEE Press)

by Bernhard Wicht

Design of Power Management Integrated Circuits Comprehensive resource on power management ICs affording new levels of functionality and applications with cost reduction in various fields Design of Power Management Integrated Circuits is a comprehensive reference for power management IC design, covering the circuit design of main power management circuits like linear and switched-mode voltage regulators, along with sub-circuits such as power switches, gate drivers and their supply, level shifters, the error amplifier, current sensing, and control loop design. Circuits for protection and diagnostics, as well as aspects of the physical design like lateral and vertical power delivery, pin-out, floor planning, grounding/supply guidelines, and packaging, are also addressed. A full chapter is dedicated to the design of integrated passives. The text illustrates the application of power management integrated circuits (PMIC) to growth areas like computing, the Internet of Things, mobility, and renewable energy. Includes numerous real-world examples, case studies, and exercises illustrating key design concepts and techniques. Offering a unique insight into this rapidly evolving technology through the author’s experience developing PMICs in both the industrial and academic environment, Design of Power Management Integrated Circuits includes information on: Capacitive, inductive and hybrid DC-DC converters and their essential circuit blocks, covering error amplifiers, comparators, and ramp generators Sensing, protection, and diagnostics, covering thermal protection, inductive loads and clamping structures, under-voltage, reference and power-on reset generation Integrated MOS, MOM and MIM capacitors, integrated inductors Control loop design and PWM generation ensuring stability and fast transient response; subharmonic oscillations in current mode control (analysis and circuit design for slope compensation) DC behavior and DC-related circuit design, covering power efficiency, line and load regulation, error amplifier, dropout, and power transistor sizing Commonly used level shifters (including sizing rules) and cascaded (tapered) driver sizing and optimization guidelines Optimizing the physical design considering packaging, floor planning, EMI, pinout, PCB design and thermal design Design of Power Management Integrated Circuits is an essential resource on the subject for circuit designers/IC designers, system engineers, and application engineers, along with advanced undergraduate students and graduate students in related programs of study.

Design of Pressure Vessels

by Subhash Reddy Gaddam

Pressure vessels are prone to explosion while in operation, due to possible errors in material selection, design and other engineering activities. Addressing issues at hand for a working professional, this book covers material selection, testing and design of pressure vessels which enables users to effectively use code rules and available design softwares. Relevant equation derivations have been simplified with comparison to ASME codes. Analysis of special components flange, bellow and tube sheet are included with their background. Topics on tube bend, supports, thermal stresses, piping flexibility and non-pressure parts are described from structural perspective. Vibration of pressure equipment components are covered as well.

Design of Prestressed Concrete to Eurocode 2, Second Edition

by Gianluca Ranzi Neil Colin Mickleborough Raymond Ian Gilbert

The design of structures in general, and prestressed concrete structures in particular, requires considerably more information than is contained in building codes. A sound understanding of structural behaviour at all stages of loading is essential. This textbook presents a detailed description and explanation of the behaviour of prestressed concrete members and structures both at service loads and at ultimate loads and, in doing so, provide a comprehensive and up-to-date guide to structural design. Much of the text is based on first principles and relies only on the principles of mechanics and the properties of concrete and steel, with numerous worked examples. However, where the design requirements are code specific, this book refers to the provisions of Eurocode 2: Design of Concrete Structures and, where possible, the notation is the same as in Eurocode 2. A parallel volume is written to the Australian Standard for Concrete Structures AS3600-2009. The text runs from an introduction to the fundamentals to in-depth treatments of more advanced topics in modern prestressed concrete structures. It suits senior undergraduate and graduate students and also practising engineers who want comprehensive introduction to the design of prestressed concrete structures. It retains the clear and concise explanations and the easy-to-read style of the first edition, but the content has been extensively re-organised and considerably expanded and updated. New chapters cover design procedures, actions and loads; prestressing systems and construction requirements; connections and detailing; and design concepts for prestressed concrete bridges. The topic of serviceability is developed extensively throughout. All the authors have been researching and teaching the behaviour and design of prestressed concrete structures for over thirty-five years and the proposed new edition of the book reflects this wealth of experience. The work has also gained much from Professor Gilbert active and long-time involvement in the development of standards for concrete buildings and concrete bridges.

Refine Search

Showing 15,776 through 15,800 of 65,066 results