- Table View
- List View
Data Science and Applications: Proceedings of ICDSA 2024, Volume 6 (Lecture Notes in Networks and Systems #1239)
by Amir H. Gandomi Mukesh Saraswat Rajendra Prasad Yadav Satyasai Jagannath NandaThis book gathers outstanding papers presented at the 5th International Conference on Data Science and Applications (ICDSA 2024), organized by Soft Computing Research Society (SCRS) and Malaviya National Institute of Technology Jaipur, India, from 17 to 19 July 2024. The book is divided into four volumes, and it covers theoretical and empirical developments in various areas of big data analytics, big data technologies, decision tree learning, wireless communication, wireless sensor networking, bioinformatics and systems, artificial neural networks, deep learning, genetic algorithms, data mining, fuzzy logic, optimization algorithms, image processing, computational intelligence in civil engineering, and creative computing.
Data Science and Artificial Intelligence for Digital Healthcare: Communications Technologies for Epidemic Models (Signals and Communication Technology)
by Fionn Murtagh Marcello Trovati Mohammed Atiquzzaman Pradeep Kumar Singh Mohsen FaridThis book explores current research and development in the area of digital healthcare using recent technologies such as data science and artificial intelligence. The authors discuss how data science, AI, and mobile technologies provide the fundamental backbone to digital healthcare, presenting each technology separately as well covering integrated solutions. The book also focuses on the integration of different multi-disciplinary approaches along with examples and case studies. In order to identify the challenges with security and privacy issues, relevant block chain technologies are identified and discussed. Social aspects related to digital solutions and platforms for healthcare are also discussed and analyzed. The book aims to present high quality, technical contributions in the field of mobile digital healthcare using technologies such as AI, deep learning, IoT and distributed cloud computing.
Data Science and Big Data Analytics: Proceedings of IDBA 2023 (Data-Intensive Research)
by Aynur Unal Dharm Singh Jat Durgesh Mishra Xin She YangThis book features high-quality research papers presented at the Third International Conference on Data Science and Big Data Analytics (IDBA 2023), organized by Sri Aurobindo Institute of Technology, Indore, India, in association with ACM and IEEE Computer Society in hybrid mode during June 16–17, 2023. This book discusses the topics such as data science, artificial intelligence, machine learning, quantum computing, big data and cloud security, computation security, big data security, information security, forecasting, data analytics, mathematics for data science, graph theory and application in data science, data visualization, computer vision, and analytics for social networks.
Data Science and Big Data Analytics: Proceedings of IDBA 2024 (Learning and Analytics in Intelligent Systems #43)
by Xin-She Yang Aynur Unal Dharm Singh Jat Durgesh MishraThis book features high-quality research papers presented at the Fourth International Conference on Data Science and Big Data Analytics (IDBA 2024), organized by Symbiosis University of Applied Sciences, Indore, India, in association with ACM and IEEE Computer Society in hybrid mode during July 12–13, 2024. This book discusses the topics such as data science, artificial intelligence, machine learning, quantum computing, big data and cloud security, computation security, big data security, information security, forecasting, data analytics, mathematics for data science, graph theory and application in data science, data visualization, computer vision, and analytics for social networks.
Data Science and Communication: Proceedings of ICTDsC 2023 (Studies in Autonomic, Data-driven and Industrial Computing)
by João Manuel R. S. Tavares Joel J. P. C. Rodrigues Debajyoti Misra Debasmriti BhattacherjeeThe book presents selected papers from the International Conference on Data Science and Communication (ICTDsC 2023) organized by the Department of Electronics and Communication Engineering and Department of Engineering Science and Humanities (DESH) Siliguri Institute of Technology, India during 23 – 24 March 2023 in Siliguri, India. The book covers state-of-the-art research insights on artificial intelligence, machine learning, big data, data analytics, cyber security and forensic, network and mobile security, advanced computing, cloud computing, quantum computing, electronics system, Internet of Things, robotics and automations, blockchain and software technology, and digital technologies for future.
Data Science and Digital Business
by Fausto Pedro García Márquez Benjamin LevThis book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
Data Science and Digital Transformation in the Fourth Industrial Revolution (Studies in Computational Intelligence #929)
by Roger Lee Jongbae KimThis edited book presents scientific results of the International Semi-Virtual Workshop on Data Science and Digital Transformation in the Fourth Industrial Revolution (DSDT 2020) which was held on October 15, 2020, at Soongsil University, Seoul, Korea. The aim of this workshop was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The workshop organizers selected the best papers from those papers accepted for presentation at the workshop. The papers were chosen based on review scores submitted by members of the program committee and underwent further rigorous rounds of review. From this second round of review, 17 of the conference’s most promising papers are then published in this Springer (SCI) book and not the conference proceedings. We impatiently await the important contributions that we know these authors will bring to the field of computer and information science.
Data Science and Emerging Technologies: Proceedings of DaSET 2022 (Lecture Notes on Data Engineering and Communications Technologies #165)
by Michael W. Berry Dhiya Al-Jumeily Azlinah Mohamed Yap Bee WahThe book presents selected papers from International Conference on Data Science and Emerging Technologies (DaSET 2022), held online at UNITAR International University, Malaysia, during December 20–21, 2022. This book aims to present current research and applications of data science and emerging technologies. The deployment of data science and emerging technology contributes to the achievement of the Sustainable Development Goals for social inclusion, environmental sustainability, and economic prosperity. Data science and emerging technologies such as artificial intelligence and blockchain are useful for various domains such as marketing, health care, finance, banking, environmental, and agriculture. An important grand challenge in data science is to determine how developments in computational and social-behavioral sciences can be combined to improve well-being, emergency response, sustainability, and civic engagement in a well-informed, data-driven society. The topics of this book include, but not limited to: artificial intelligence, big data technology, machine and deep learning, data mining, optimization algorithms, blockchain, Internet of Things (IoT), cloud computing, computer vision, cybersecurity, augmented and virtual reality, cryptography, and statistical learning.
Data Science and Emerging Technologies: Proceedings of DaSET 2023 (Lecture Notes on Data Engineering and Communications Technologies #191)
by Michael W. Berry Yap Bee Wah Dhiya Al-Jumeily OBEThe book presents selected papers from International Conference on Data Science and Emerging Technologies (DaSET 2023), held online at UNITAR International University, Malaysia during December 4–5, 2023. This book presents current research and applications of data science and emerging technologies. The topics covered are artificial intelligence, big data technology, machine and deep learning, data mining, optimization algorithms, blockchain, Internet of Things (IoT), cloud computing, computer vision, cybersecurity, augmented and virtual reality, cryptography, and statistical learning.
Data Science and Information Security: First International Artificial Intelligence Conference, IAIC 2023, Nanjing, China, November 25–27, 2023, Revised Selected Papers, Part II (Communications in Computer and Information Science #2059)
by Yi Pan Hai Jin Jianfeng LuThis 3-volume set, CCIS 2058-2060 constitutes the First International Conference, on Artificial Intelligence, IAIC 2023, held in Nanjing, China, in November 2023. The 85 full papers presented were carefully reviewed and selected from 428 submissions. The papers are clustered in parts on: Artificial Intelligence and Machine Learning; Data Security and information Security; Computer Networks and IoT. The papers present recent research and developments in artificial intelligence and its applications in machine learning, natural language processing, computer vision, robotics, and ethical considerations.
Data Science and Innovations for Intelligent Systems: Computational Excellence and Society 5.0 (Demystifying Technologies for Computational Excellence)
by Kavita TanejaData science is an emerging field and innovations in it need to be explored for the success of society 5.0. This book not only focuses on the practical applications of data science to achieve computational excellence, but also digs deep into the issues and implications of intelligent systems. This book highlights innovations in data science to achieve computational excellence that can optimize performance of smart applications. The book focuses on methodologies, framework, design issues, tools, architectures, and technologies necessary to develop and understand data science and its emerging applications in the present era. This book will be useful for the research community, start-up entrepreneurs, academicians, and data centered industries and professors that are interested in exploring innovations in varied applications and areas of data science.
Data Science and Intelligent Applications: Proceedings of ICDSIA 2020 (Lecture Notes on Data Engineering and Communications Technologies #52)
by Vincenzo Piuri Ketan Kotecha Hetalkumar N. Shah Rajan PatelThis book includes selected papers from the International Conference on Data Science and Intelligent Applications (ICDSIA 2020), hosted by Gandhinagar Institute of Technology (GIT), Gujarat, India, on January 24–25, 2020. The proceedings present original and high-quality contributions on theory and practice concerning emerging technologies in the areas of data science and intelligent applications. The conference provides a forum for researchers from academia and industry to present and share their ideas, views and results, while also helping them approach the challenges of technological advancements from different viewpoints. The contributions cover a broad range of topics, including: collective intelligence, intelligent systems, IoT, fuzzy systems, Bayesian networks, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence, speech processing, machine learning and deep learning, and intelligent applications and systems. Helping strengthen the links between academia and industry, the book offers a valuable resource for instructors, students, industry practitioners, engineers, managers, researchers, and scientists alike.
Data Science and Intelligent Systems: Proceedings of 5th Computational Methods in Systems and Software 2021, Vol. 2 (Lecture Notes in Networks and Systems #231)
by Radek Silhavy Petr Silhavy Zdenka ProkopovaThis book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included.The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results
Data Science and Internet of Things: Research and Applications at the Intersection of DS and IoT (Internet of Things)
by Giancarlo Fortino Antonio Liotta Raffaele Gravina Alessandro LongheuThis book focuses on the combination of IoT and data science, in particular how methods, algorithms, and tools from data science can effectively support IoT. The authors show how data science methodologies, techniques and tools, can translate data into information, enabling the effectiveness and usefulness of new services offered by IoT stakeholders. The authors posit that if IoT is indeed the infrastructure of the future, data structure is the key that can lead to a significant improvement of human life. The book aims to present innovative IoT applications as well as ongoing research that exploit modern data science approaches. Readers are offered issues and challenges in a cross-disciplinary scenario that involves both IoT and data science fields. The book features contributions from academics, researchers, and professionals from both fields.
Data Science and Machine Learning Applications in Subsurface Engineering
by Daniel Asante OtchereThis book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments. This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions.
Data Science and Machine Learning: 21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11–13, 2023, Proceedings (Communications in Computer and Information Science #1943)
by Yee Ling Boo Philippe Fournier-Viger Yun Sing Koh Diana Benavides-Prado Sarah ErfaniThis book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 11–13, 2023.The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life.
Data Science and Medical Informatics in Healthcare Technologies (SpringerBriefs in Applied Sciences and Technology)
by Nguyen Thi Dieu Linh Zhongyu (Joan) LuThis book highlights a timely and accurate insight at the endeavour of the bioinformatics and genomics clinicians from industry and academia to address the societal needs. The contents of the book unearth the lacuna between the medication and treatment in the current preventive medicinal and pharmaceutical system. It contains chapters prepared by experts in life sciences along with data scientists for examining the circumstances of health care system for the next decade. It also highlights the automated processes for analyzing data in clinical trial research, specifically for drug development. Additionally, the data science solutions provided in this book help pharmaceutical companies to improve on what had historically been manual, costly and laborious process for cross-referencing research in clinical trials on drug development, while laying the groundwork for use with a full range of other drugs for the conditions ranging from tuberculosis, to diabetes, to heart attacks and many others.
Data Science and Network Engineering: Proceedings ICDSNE 2024 (Lecture Notes in Networks and Systems #1165)
by David Taniar Suyel Namasudra Nirmalya Kar Sarat Kumar PatraThis book includes research papers presented at the International Conference on Data Science and Network Engineering (ICDSNE 2024) organized by the Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura, India, during July 12–13, 2024. It includes research works from researchers, academicians, business executives, and industry professionals for solving real-life problems by using the advancements and applications of data science and network engineering. This book covers many advanced topics, such as artificial intelligence (AI), machine learning (ML), deep learning (DL), computer networks, blockchain, security and privacy, Internet of things (IoT), cloud computing, big data, supply chain management, and many more. Different sections of this book are highly beneficial for the researchers, who are working in the field of data science and network engineering.
Data Science and Network Engineering: Proceedings of ICDSNE 2023 (Lecture Notes in Networks and Systems #791)
by Pascal Lorenz Suyel Namasudra Munesh Chandra Trivedi Ruben Gonzalez CrespoThis book includes research papers presented at the International Conference on Data Science and Network Engineering (ICDSNE 2023) organized by the Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura, India, during July 21–22, 2023. It includes research works from researchers, academicians, business executives, and industry professionals for solving real-life problems by using the advancements and applications of data science and network engineering. This book covers many advanced topics, such as artificial intelligence (AI), machine learning (ML), deep learning (DL), computer networks, blockchain, security and privacy, Internet of things (IoT), cloud computing, big data, supply chain management, and many more. Different sections of this book are highly beneficial for the researchers, who are working in the field of data science and network engineering.
Data Science and Security: Proceedings of IDSCS 2020 (Lecture Notes in Networks and Systems #132)
by Durgesh Kumar Mishra Aynur Unal Dharm Singh Jat Samiksha ShuklaThis book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2020), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 13–14 March 2020. The proceeding will be targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing.
Data Science and Security: Proceedings of IDSCS 2021 (Lecture Notes in Networks and Systems #290)
by Durgesh Kumar Mishra Aynur Unal Samiksha Shukla Joseph Varghese Kureethara Dong Seog HanThis book presents the best-selected papers presented at the International Conference on Data Science, Computation and Security (IDSCS-2021), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during April 16–17, 2021. The proceeding is targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing, and cloud computing.
Data Science and Security: Proceedings of IDSCS 2022 (Lecture Notes in Networks and Systems #462)
by Xiao-Zhi Gao Samiksha Shukla Joseph Varghese Kureethara Durgesh MishraThis book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2022), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 11 – 12 February 2022. The book proposes new technologies and discusses future solutions and applications of data science, data analytics and security. The book targets current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing.
Data Science and Security: Proceedings of IDSCS 2023 (Lecture Notes in Networks and Systems #922)
by Durgesh Kumar Mishra Hiroki Sayama Samiksha Shukla Joseph Varghese KureetharaThis book presents best-selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2023), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, from 02–04 November, 2023. The proceeding targets the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing, and cloud computing.
Data Science for Civil Engineering: A Beginner's Guide
by Prashant Shantaram Dhotre Parikshit Narendra Mahalle Rakesh K. Jain Deepak Tatyasaheb ManeThis book explains use of data science-based techniques for modeling and providing optimal solutions to complex problems in civil engineering. It discusses civil engineering problems like air, water and land pollution, climate crisis, transportation infrastructures, traffic and travel modes, mobility services, and so forth. Divided into two sections, the first one deals with the basics of data science and essential mathematics while the second section covers pertinent applications in structural and environmental engineering, construction management, and transportation. Features: Details information on essential mathematics required to implement civil engineering applications using data science techniques. Discusses broad background of data science and its fundamentals. Focusses on structural engineering, transportation systems, water resource management, geomatics, and environmental engineering. Includes python programming libraries to solve complex problems. Addresses various real-world applications of data science based civil engineering use cases. This book aims at senior undergraduate students in Civil Engineering and Applied Data Science.
Data Science for Engineers
by Raghunathan Rengaswamy Resmi SureshWith tremendous improvement in computational power and availability of rich data, almost all engineering disciplines use data science at some level. This textbook presents material on data science comprehensively, and in a structured manner. It provides conceptual understanding of the fields of data science, machine learning, and artificial intelligence, with enough level of mathematical details necessary for the readers. This will help readers understand major thematic ideas in data science, machine learning and artificial intelligence, and implement first-level data science solutions to practical engineering problems. <p><p> The book- <p><p> Provides a systematic approach for understanding data science techniques. Explain why machine learning techniques are able to cross-cut several disciplines. Covers topics including statistics, linear algebra and optimization from a data science perspective. Provides multiple examples to explain the underlying ideas in machine learning algorithms. Describes several contemporary machine learning algorithms. <p><p> The textbook is primarily written for undergraduate and senior undergraduate students in different engineering disciplines including chemical engineering, mechanical engineering, electrical engineering, electronics and communications engineering for courses on data science, machine learning and artificial intelligence.