Browse Results

Showing 16,851 through 16,875 of 74,175 results

Data Science in Engineering and Management: Applications, New Developments, and Future Trends

by Zdzislaw Polkowski

This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.

Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Ramin Madarshahian François Hemez

Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:Novel Data-driven Analysis MethodsDeep Learning Gaussian Process AnalysisReal-time Video-based AnalysisApplications to Nonlinear Dynamics and Damage DetectionHigh-rate Structural Monitoring and Prognostics

Data Science in Engineering, Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Ramin Madarshahian Francois Hemez

Data Science and Engineering Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:Data Science in Engineering ApplicationsEngineering MathematicsComputational Methods in Engineering

Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Ramin Madarshahian Francois Hemez

Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:Novel Data-driven Analysis MethodsDeep Learning Gaussian Process AnalysisReal-time Video-based AnalysisApplications to Nonlinear Dynamics and Damage DetectionHigh-rate Structural Monitoring and Prognostics

Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning

by Valliappa Lakshmanan

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches.Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science.You’ll learn how to:Automate and schedule data ingest, using an App Engine applicationCreate and populate a dashboard in Google Data StudioBuild a real-time analysis pipeline to carry out streaming analyticsConduct interactive data exploration with Google BigQueryCreate a Bayesian model on a Cloud Dataproc clusterBuild a logistic regression machine-learning model with SparkCompute time-aggregate features with a Cloud Dataflow pipelineCreate a high-performing prediction model with TensorFlowUse your deployed model as a microservice you can access from both batch and real-time pipelines

Data Science with Raspberry Pi

by G. Anand K. Mohaideen Abdul Kadhar

Implement real-time data processing applications on the Raspberry Pi. This book uniquely helps you work with data science concepts as part of real-time applications using the Raspberry Pi as a localized cloud. <P><P> You’ll start with a brief introduction to data science followed by a dedicated look at the fundamental concepts of Python programming. Here you’ll install the software needed for Python programming on the Pi, and then review the various data types and modules available. The next steps are to set up your Pis for gathering real-time data and incorporate the basic operations of data science related to real-time applications. You’ll then combine all these new skills to work with machine learning concepts that will enable your Raspberry Pi to learn from the data it gathers. Case studies round out the book to give you an idea of the range of domains where these concepts can be applied. <P><P> By the end of Data Science with the Raspberry Pi, you’ll understand that many applications are now dependent upon cloud computing. As Raspberry Pis are cheap, it is easy to use a number of them closer to the sensors gathering the data and restrict the analytics closer to the edge. You’ll find that not only is the Pi an easy entry point to data science, it also provides an elegant solution to cloud computing limitations through localized deployment.

Data Science with Semantic Technologies: Deployment and Exploration

by Narayan C. Debnath Archana Patel

Gone are the days when data was interlinked with related data by humans and human interpretation was required. Data is no longer just data. It is now considered a Thing or Entity or Concept with meaning, so that a machine not only understands the concept but also extrapolates the way humans do.Data Science with Semantic Technologies: Deployment and Exploration, the second volume of a two-volume handbook set, provides a roadmap for the deployment of semantic technologies in the field of data science and enables the user to create intelligence through these technologies by exploring the opportunities and eradicating the challenges in the current and future time frame. In addition, this book offers the answer to various questions like: What makes a technology semantic as opposed to other approaches to data science? What is knowledge data science? How does knowledge data science relate to other fields? This book explores the optimal use of these technologies to provide the highest benefit to the user under one comprehensive source and title. As there is no dedicated book available in the market on this topic at this time, this book becomes a unique resource for scholars, researchers, data scientists, professionals, and practitioners. This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation.

Data Science with Semantic Technologies: New Trends and Future Developments

by Narayan C. Debnath Archana Patel

As data is an important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. This first volume of a two-volume handbook set provides a roadmap for new trends and future developments of data science with semantic technologies. Data Science with Semantic Technologies: New Trends and Future Developments highlights how data science enables the user to create intelligence through these technologies. In addition, this book offers the answers to various questions such as: Can semantic technologies facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of the researchers? What should be the vision 2030 for data science? This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and, thus, it is a unique resource for scholars, researchers, professionals, and practitioners in this field.

Data Science-Based Full-Lifespan Management of Lithium-Ion Battery: Manufacturing, Operation and Reutilization (Green Energy and Technology)

by Xin Lai Kailong Liu Yujie Wang

This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers.

Data Science: 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, Macao, China, September 27–30, 2024, Proceedings, Part I (Communications in Computer and Information Science #2213)

by Qilong Han Xianhua Song Zeguang Lu Chen Yu Jianping Wang Chengzhong Xu Haiwei Pan

This three-volume set CCIS 2213-2215 constitutes the refereed proceedings of the 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, held in Macau, China, during September 27–30, 2024. The 74 full papers and 3 short papers presented in these three volumes were carefully reviewed and selected from 249 submissions. The papers are organized in the following topical sections: Part I: Novel methods or tools used in big data and its applications; applications of data science. Part II: Education research, methods and materials for data science and engine; data security and privacy; big data mining and knowledge management. Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis.

Data Science: 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, Macao, China, September 27–30, 2024, Proceedings, Part II (Communications in Computer and Information Science #2214)

by Qilong Han Xianhua Song Zeguang Lu Chen Yu Jianping Wang Chengzhong Xu Haiwei Pan

This three-volume set CCIS 2213-2215 constitutes the refereed proceedings of the 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, held in Macau, China, during September 27–30, 2024. The 74 full papers and 3 short papers presented in these three volumes were carefully reviewed and selected from 249 submissions. The papers are organized in the following topical sections: Part I: Novel methods or tools used in big data and its applications; applications of data science. Part II: Education research, methods and materials for data science and engine; data security and privacy; big data mining and knowledge management. Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis.

Data Science: 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, Macao, China, September 27–30, 2024, Proceedings, Part III (Communications in Computer and Information Science #2215)

by Qilong Han Xianhua Song Zeguang Lu Chen Yu Jianping Wang Chengzhong Xu Haiwei Pan

This three-volume set CCIS 2213-2215 constitutes the refereed proceedings of the 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, held in Macau, China, during September 27–30, 2024. The 74 full papers and 3 short papers presented in these three volumes were carefully reviewed and selected from 249 submissions. The papers are organized in the following topical sections: Part I: Novel methods or tools used in big data and its applications; applications of data science. Part II: Education research, methods and materials for data science and engine; data security and privacy; big data mining and knowledge management. Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis.

Data Science: 5th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019, Guilin, China, September 20–23, 2019, Proceedings, Part II (Communications in Computer and Information Science #1059)

by Hongzhi Wang Zeguang Lu Xiaolan Xie Rui Mao

This two volume set (CCIS 1058 and 1059) constitutes the refereed proceedings of the 5th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019 held in Guilin, China, in September 2019. The 104 revised full papers presented in these two volumes were carefully reviewed and selected from 395 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including data mining; data base; net work; security; machine learning; bioinformatics; natural language processing; software engineering; graphic images; system; education; application.

Data Science: 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022, Chengdu, China, August 19–22, 2022, Proceedings, Part I (Communications in Computer and Information Science #1628)

by Yang Wang Qilong Han Hongzhi Wang Xianhua Song Zeguang Lu Guobin Zhu

This two volume set (CCIS 1628 and 1629) constitutes the refereed proceedings of the 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022 held in Chengdu, China, in August, 2022. The 65 full papers and 26 short papers presented in these two volumes were carefully reviewed and selected from 261 submissions. The papers are organized in topical sections on: Big Data Mining and Knowledge Management; Machine Learning for Data Science; Multimedia Data Management and Analysis.

Data Science: 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022, Chengdu, China, August 19–22, 2022, Proceedings, Part II (Communications in Computer and Information Science #1629)

by Yang Wang Qilong Han Xianhua Song Zeguang Lu Guobin Zhu Liehui Zhang

This two volume set (CCIS 1628 and 1629) constitutes the refereed proceedings of the 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022 held in Chengdu, China, in August, 2022. The 65 full papers and 26 short papers presented in these two volumes were carefully reviewed and selected from 261 submissions. The papers are organized in topical sections on: Big Data Management and Applications; Data Security and Privacy; Applications of Data Science; Infrastructure for Data Science; Education Track; Regulatory Technology in Finance.

Data Science: 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023, Harbin, China, September 22–24, 2023, Proceedings, Part I (Communications in Computer and Information Science #1879)

by Qilong Han Hongzhi Wang Xianhua Song Zeguang Lu Zhiwen Yu Bin Guo Xiaokang Zhou

This two-volume set (CCIS 1879 and 1880) constitutes the refereed proceedings of the 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023 held in Harbin, China, during September 22–24, 2023. The 52 full papers and 14 short papers presented in these two volumes were carefully reviewed and selected from 244 submissions. The papers are organized in the following topical sections:Part I: Applications of Data Science, Big Data Management and Applications, Big Data Mining and Knowledge Management, Data Visualization, Data-driven Security, Infrastructure for Data Science, Machine Learning for Data Science and Multimedia Data Management and Analysis.Part II: Data-driven Healthcare, Data-driven Smart City/Planet, Social Media and Recommendation Systems and Education using big data, intelligent computing or data mining, etc.

Data Science: 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023, Harbin, China, September 22–24, 2023, Proceedings, Part II (Communications in Computer and Information Science #1880)

by Qilong Han Hongzhi Wang Xianhua Song Zeguang Lu Zhiwen Yu Bin Guo Xiaokang Zhou

This two-volume set (CCIS 1879 and 1880) constitutes the refereed proceedings of the 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023 held in Harbin, China, during September 22–24, 2023.The 52 full papers and 14 short papers presented in these two volumes were carefully reviewed and selected from 244 submissions. The papers are organized in the following topical sections:Part I: Applications of Data Science, Big Data Management and Applications, Big Data Mining and Knowledge Management, Data Visualization, Data-driven Security, Infrastructure for Data Science, Machine Learning for Data Science and Multimedia Data Management and Analysis.Part II: Data-driven Healthcare, Data-driven Smart City/Planet, Social Media and Recommendation Systems and Education using big data, intelligent computing or data mining, etc.

Data Science: From Research to Application (Lecture Notes on Data Engineering and Communications Technologies #45)

by Zahra Narimani Mahdi Bohlouli Bahram Sadeghi Bigham Mahdi Vasighi Ebrahim Ansari

This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0.Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017.This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems.Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.

Data Science: New Issues, Challenges and Applications (Studies in Computational Intelligence #869)

by Janusz Kacprzyk Gintautas Dzemyda Jolita Bernatavičienė

This book contains 16 chapters by researchers working in various fields of data science. They focus on theory and applications in language technologies, optimization, computational thinking, intelligent decision support systems, decomposition of signals, model-driven development methodologies, interoperability of enterprise applications, anomaly detection in financial markets, 3D virtual reality, monitoring of environmental data, convolutional neural networks, knowledge storage, data stream classification, and security in social networking. The respective papers highlight a wealth of issues in, and applications of, data science. Modern technologies allow us to store and transfer large amounts of data quickly. They can be very diverse - images, numbers, streaming, related to human behavior and physiological parameters, etc. Whether the data is just raw numbers, crude images, or will help solve current problems and predict future developments, depends on whether we can effectively process and analyze it. Data science is evolving rapidly. However, it is still a very young field. In particular, data science is concerned with visualizations, statistics, pattern recognition, neurocomputing, image analysis, machine learning, artificial intelligence, databases and data processing, data mining, big data analytics, and knowledge discovery in databases. It also has many interfaces with optimization, block chaining, cyber-social and cyber-physical systems, Internet of Things (IoT), social computing, high-performance computing, in-memory key-value stores, cloud computing, social computing, data feeds, overlay networks, cognitive computing, crowdsource analysis, log analysis, container-based virtualization, and lifetime value modeling. Again, all of these areas are highly interrelated. In addition, data science is now expanding to new fields of application: chemical engineering, biotechnology, building energy management, materials microscopy, geographic research, learning analytics, radiology, metal design, ecosystem homeostasis investigation, and many others.

Data Science: Techniques for Excelling at Data Science

by Daniel Vaughan

This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline—machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.With this book, you will:Understand how data science creates valueDeliver compelling narratives to sell your data science projectBuild a business case using unit economics principlesCreate new features for a ML model using storytellingLearn how to decompose KPIsPerform growth decompositions to find root causes for changes in a metricDaniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).

Data Science: Theory, Analysis and Applications

by Qurban A. Memon Shakeel Ahmed Khoja

The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.

Data Security in Internet of Things Based RFID and WSN Systems Applications (Internet of Everything (IoE))

by Rohit Sharma Korhan Cengiz Rajendra Prasad Mahapatra

This book focuses on RFID (Radio Frequency Identification), IoT (Internet of Things), and WSN (Wireless Sensor Network). It includes contributions that discuss the security and privacy issues as well as the opportunities and applications that are tightly linked to sensitive infrastructures and strategic services. This book addresses the complete functional framework and workflow in IoT-enabled RFID systems and explores basic and high-level concepts. It is based on the latest technologies and covers the major challenges, issues, and advances in the field. It presents data acquisition and case studies related to data-intensive technologies in RFID-based IoT and includes WSN-based systems and their security. It can serve as a manual for those in the industry while also helping beginners to understand both the basic and advanced aspects of IoT-based RFID-related issues. This book can be a premier interdisciplinary platform for researchers, practitioners, and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered, and find solutions that have been adopted in the fields of IoT and analytics.

Data Storytelling and Visualization with Tableau: A Hands-on Approach

by Parikshit Narendra Mahalle Prachi Manoj Joshi

With the tremendous growth and availability of the data, this book covers understanding the data, while telling a story with visualization including basic concepts about the data, the relationship and the visualizations. All the technical details that include installation and building the different visualizations are explained in a clear and systematic way. Various aspects pertaining to storytelling and visualization are explained in the book through Tableau. Features Provides a hands-on approach in Tableau in a simplified manner with steps Discusses the broad background of data and its fundamentals, from the Internet of Everything to analytics Emphasizes the use of context in delivering the stories Presents case studies with the building of a dashboard Presents application areas and case studies with identification of the impactful visualization This book will be helpful for professionals, graduate students and senior undergraduate students in Manufacturing Engineering, Civil and Mechanical Engineering, Data Analytics and Data Visualization.

Data Structures for Engineers and Scientists Using Python

by Nishu Gupta Rakesh Nayak

The text covers the fundamentals of Python programming and the implementation of data structures using Python programming with the help of worked-out examples. It provides a learning tool for engineers as well as for researchers and scientists of advanced level. The text further discusses important concepts such as polynomial manipulation, sparse matrices, implementation of stack using the queue model and topological sorting.This book: Discusses the implementation of various data structures such as an array, stack, queue, tree and graph along with sorting and searching algorithms. Includes programming tips to highlight important concepts and help readers avoid common programming errors. Presents each concept of data structure with a different approach and implements the same using Python programming. Offers rich chapter-end pedagogy including objective-type questions (with answers), review questions and programming exercises to facilitate review. Covers fundamentals of Python up to object-oriented concepts including regular expression. It is primarily written for senior undergraduate, graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering and information technology.

Data Technology in Materials Modelling (SpringerBriefs in Applied Sciences and Technology)

by Martin Thomas Horsch Silvia Chiacchiera Welchy Leite Cavalcanti Björn Schembera

This open access book discusses advances in semantic interoperability for materials modelling, aiming at integrating data obtained from different methods and sources into common frameworks, and facilitating the development of platforms where simulation services in computational molecular engineering can be provided as well as coupled and linked to each other in a standardized and reliable way. The Virtual Materials Marketplace (VIMMP), which is open to all service providers and clients, provides a framework for offering and accessing such services, assisting the uptake of novel modelling and simulation approaches by SMEs, consultants, and industrial R&D end users. Semantic assets presented include the EngMeta metadata schema for research data infrastructures in simulation-based engineering and the collection of ontologies from VIMMP, including the ontology for simulation, modelling, and optimization (OSMO) and the VIMMP software ontology (VISO).

Refine Search

Showing 16,851 through 16,875 of 74,175 results