- Table View
- List View
Discrete Element Method to Model 3D Continuous Materials
by Inigo Terreros Mohamed Jebahi Ivan Iordanoff Damien AndreComplex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects.
Discrete-Event Modeling and Simulation: Theory and Applications (Computational Analysis, Synthesis, and Design of Dynamic Systems)
by Pieter J. Mosterman Gabriel A. WainerCollecting the work of the foremost scientists in the field, Discrete-Event Modeling and Simulation: Theory and Applications presents the state of the art in modeling discrete-event systems using the discrete-event system specification (DEVS) approach. It introduces the latest advances, recent extensions of formal techniques, and real-world examples of various applications. The book covers many topics that pertain to several layers of the modeling and simulation architecture. It discusses DEVS model development support and the interaction of DEVS with other methodologies. It describes different forms of simulation supported by DEVS, the use of real-time DEVS simulation, the relationship between DEVS and graph transformation, the influence of DEVS variants on simulation performance, and interoperability and composability with emphasis on DEVS standardization. The text also examines extensions to DEVS, new formalisms, and abstractions of DEVS models as well as the theory and analysis behind real-world system identification and control. To support the generation and search of optimal models of a system, a framework is developed based on the system entity structure and its transformation to DEVS simulation models. In addition, the book explores numerous interesting examples that illustrate the use of DEVS to build successful applications, including optical network-on-chip, construction/building design, process control, workflow systems, and environmental models. A one-stop resource on advances in DEVS theory, applications, and methodology, this volume offers a sampling of the best research in the area, a broad picture of the DEVS landscape, and trend-setting applications enabled by the DEVS approach. It provides the basis for future research discoveries and encourages the development of new applications.
Discrete-Event Modeling and Simulation: A Practitioner's Approach (Computational Analysis, Synthesis, and Design of Dynamic Systems)
by Gabriel A. WainerComplex artificial dynamic systems require advanced modeling techniques that can accommodate their asynchronous, concurrent, and highly non-linear nature. Discrete Event systems Specification (DEVS) provides a formal framework for hierarchical construction of discrete-event models in a modular manner, allowing for model re-use and reduced development time. Discrete Event Modeling and Simulation presents a practical approach focused on the creation of discrete-event applications. The book introduces the CD++ tool, an open-source framework that enables the simulation of discrete-event models. After setting up the basic theory of DEVS and Cell-DEVS, the author focuses on how to use the CD++ tool to define a variety of models in biology, physics, chemistry, and artificial systems. They also demonstrate how to map different modeling techniques, such as Finite State Machines and VHDL, to DEVS. The in-depth coverage elaborates on the creation of simulation software for DEVS models and the 3D visualization environments associated with these tools. A much-needed practical approach to creating discrete-event applications, this book offers world-class instruction on the field’s most useful modeling tools.
Discrete-Event Simulation: Concepts and Production in Arena (ISTE Consignment)
by Abdessalem JerbiThe use of discrete-event simulation in various fields, such as in industry, logistics and public health, has really taken off over the last few decades. The implementation of discrete-event simulation does however require an understanding, and perhaps even a mastery, of precise theoretical and methodological principles. Discrete-Event Simulation presents the key concepts involved in any discrete-event simulation project, covering the most frequently used techniques for analysing data and results, the methodological and practical aspects of implementing discrete-event simulation, along with an introduction to the use of the “Arena” discrete-event simulation tool. This book combines the elements presented with applied examples, as well as numerous examples of simulation projects in various fields.
Discrete Event Simulation: A Practical Approach (Computer Science & Engineering)
by Udo W. Pooch James A. WallDiscrete Event Simulation is a process-oriented text/reference that utilizes an eleven-step model to represent the simulation process from problem formulation to implementation and documentation. The book presents the necessary level of detail required to fully develop a model that produces meaningful results and considers the tools necessary to interpret those results. Sufficient background information is provided so that the underlying concepts of simulation are understood.Major topics covered in Discrete Event Simulation include probability and distributional theory, statistical estimation and inference, the generation of random variates, verification and validation techniques, time management methods, experimental design, and programming language considerations. The book also examines distributed simulation and issues related to distributing the physical process over a network of tightly coupled processors. Topics covered in this area include deadlock, synchronization, rollback, event management, and communication processes.Fully worked examples and numerous practical exercises have been drawn from the engineering disciplines and computer science, although they have been structured so that they will be useful as well to other disciplines such as economics, business administration, and management science. The presentation of techniques and methods in Discrete Event Simulation make it an ideal text/reference for all practitioners of discrete event simulation.
Discrete-Event Simulation and System Dynamics for Management Decision Making
by Leonid Churilov Brian Dangerfield Sally BrailsfordIn recent years, there has been a growing debate, particularly in the UK and Europe, over the merits of using discrete-event simulation (DES) and system dynamics (SD); there are now instances where both methodologies were employed on the same problem. This book details each method, comparing each in terms of both theory and their application to various problem situations. It also provides a seamless treatment of various topics--theory, philosophy, detailed mechanics, practical implementation--providing a systematic treatment of the methodologies of DES and SD, which previously have been treated separately.
Discrete Event Systems
by Moamar Sayed-MouchawehDiscrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DESs). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. This book classifies the different techniques and approaches according to several criteria such as: modeling tools (Automata, Petri nets, Templates) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing, data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis; as well as the complexity (polynomial, exponential) of the algorithm that is used to determine the set of faults that the proposed approach is able to diagnose as well as the delay time required for this diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book will include illustrated examples of the presented methods and techniques as well as a discussion on the application of these methods on several real-world problems.
Discrete Mathematical Structures: A Succinct Foundation (Mathematics and its Applications)
by B. V. Kumar Hemen DuttaThis book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Discrete Mathematics: for New Technology
by Rowan Garnier John TaylorIn a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics.
Discrete Mathematics and Graph Theory: A Concise Study Companion and Guide (Undergraduate Topics in Computer Science)
by K. ErciyesThis textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
Discrete Problems in Nature Inspired Algorithms
by Anupam Shukla Ritu TiwariThis book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.
Discrete Random Signal Processing and Filtering Primer with MATLAB (Electrical Engineering and Applied Signal Processing Series)
by Alexander D. PoularikasEngineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering.Numerous Useful Examples, Problems, and Solutions – An Extensive and Powerful ReviewWritten for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offers a solid review of recent developments in discrete signal processing. The book also details the latest progress in the revolutionary MATLAB language.A Practical Self-Tutorial That Transcends TheoryThe author introduces an incremental discussion of signal processing and filtering, and presents several new methods that can be used for a more dynamic analysis of random digital signals with both linear and non-linear filtering. Ideal as a self-tutorial, this book includes numerous examples and functions, which can be used to select parameters, perform simulations, and analyze results. This concise guide encourages readers to use MATLAB functions – and those new ones introduced as Book MATLAB Functions – to substitute many different combinations of parameters, giving them a firm grasp of how much each parameter affects results. Much more than a simple review of theory, this book emphasizes problem solving and result analysis, enabling readers to take a hands-on approach to advance their own understanding of MATLAB and the way it is used within signal processing and filtering.
Discrete Signals and Systems with MATLAB® (Electrical Engineering Textbook Ser.)
by Taan S. ElAliThe subject of Discrete Signals and Systems is broad and deserves a single book devoted to it. The objective of this textbook is to present all the required material that an undergraduate student will need to master this subject matter and the use of MATLAB. This book is primarily intended for electrical and computer engineering students, and especially for use by juniors or seniors in these undergraduate engineering disciplines. It can also be very useful to practicing engineers. It is detailed, broad, based on mathematical basic principles, focused, and it also contains many solved problems using analytical tools as well as MATLAB. The book is ideal for a one-semester course in the area of discrete linear systems or digital signal processing, where the instructor can cover all chapters with ease. Numerous examples are presented within each chapter to illustrate each concept when and where it is presented. Most of the worked-out examples are first solved analytically and then solved using MATLAB in a clear and understandable fashion.
Discrete Stochastic Models and Applications for Reliability Engineering and Statistical Quality Control
by Serkan EryilmazDiscrete stochastic models are tools that allow us to understand, control, and optimize engineering systems and processes. This book provides real-life examples and illustrations of models in reliability engineering and statistical quality control and establishes a connection between the theoretical framework and their engineering applications. The book describes discrete stochastic models along with real-life examples and explores not only well-known models, but also comparatively lesser known ones. It includes definitions, concepts, and methods with a clear understanding of their use in reliability engineering and statistical quality control fields. Also covered are the recent advances and established connections between the theoretical framework of discrete stochastic models and their engineering applications. An ideal reference for researchers in academia and graduate students working in the fields of operations research, reliability engineering, quality control, and probability and statistics.
Discrete Stochastic Processes and Optimal Filtering (Wiley-iste Ser.)
by Jean-Claude Bertein Roger CeschiOptimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.
Discrete Stochastic Processes and Optimal Filtering (Wiley-iste Ser.)
by Jean-Claude Bertein Roger CeschiOptimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using Matlab.
Discrete Systems and Digital Signal Processing with MATLAB (Electrical Engineering Textbook Ser.)
by Taan S. ElAli"Discrete linear systems and digital signal processing have been treated for years in separate publications. ElAli has skillfully combined these two subjects into a single and very useful volume. � Useful for electrical and computer engineering students and working professionals� a nice addition to the shelves of academic and public libraries. "Sum
Discrete Taylor Transform and Inverse Transform
by Alireza Baghai-WadjiRevolutionize the calculation of mixed derivatives with this groundbreaking text Transform and inverse transform techniques, such as the Fourier transform and the Laplace transform, enable scientists and engineers to conduct research and design in transformed domains where the work is simpler, after which the results can be converted back into the real domain where they can be applied or actualized. This latter stage in the process, the inverse transform, ordinarily poses significant challenges. New transform/inverse transform techniques carry extraordinary potential to produce revolutionary new science and engineering solutions. Discrete Taylor Transform and Inverse Transform presents the groundbreaking discovery of a new transform technique. Placing a novel emphasis on the “position variable” and “derivative operator” as main actors, the Discrete Taylor Transform and Inverse Transform (D-TTIT) will facilitate the calculation of mixed derivatives of multivariate functions to any desired order. The result promises to create new applications not only in its allied fields of quantum physics and quantum engineering, but potentially much more widely. Readers will also find: Discussion of possible applications in electrical engineering, acoustics, photonics, and many more Analysis of functions depending on one, two, or three independent variables Tools for theoreticians and practitioners to design their own algorithms for solving specific boundary-value problems Discrete Taylor Transform and Inverse Transform is ideal for any scientific or engineering professional looking to understand a cutting-edge research and design tool.
Discrete-Time and Discrete-Space Dynamical Systems (Communications and Control Engineering)
by Kuize Zhang Lijun Zhang Lihua XieDiscrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including:Boolean control networks;nondeterministic finite-transition systems;finite automata;labelled Petri nets; andcellular automata.The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology.Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods.
Discrete-Time Control System Design with Applications
by C. A. Rabbath N. LéchevinThis unique book provides a bridge between digital control theory and vehicle guidance and control practice. It presents practical techniques of digital redesign and direct discrete-time design suitable for a real-time implementation of controllers and guidance laws at multiple rates and with and computational techniques. The theory of digital control is given as theorems, lemmas, and propositions. The design of the digital guidance and control systems is illustrated by means of step-by-step procedures, algorithms, and case studies. The systems proposed are applied to realistic models of unmanned systems and missiles, and digital implementation.
Discrete-Time Inverse Optimal Control for Nonlinear Systems
by Edgar N. Sanchez Fernando Ornelas-TellezDiscrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.
Discrete-Time Optimal Control and Games on Large Intervals
by Alexander J. ZaslavskiDevoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems. Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.
Discrete-Time Recurrent Neural Control: Analysis and Applications (Automation and Control Engineering)
by Edgar N. SanchezThe book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems.The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market.It is an excellent book after all."— Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author."— Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones."— Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Discrete-Time Sliding Mode Control for Networked Control System (Studies In Systems, Decision And Control #132)
by Dipesh H. Shah Axaykumar MehtaThis book presents novel algorithms for designing Discrete-Time Sliding Mode Controllers (DSMCs) for Networked Control Systems (NCSs) with both types of fractional delays namely deterministic delay and random delay along with different packet loss conditions such as single packet loss and multiple packet loss that occur within the sampling period. Firstly, the switching type and non-switching type algorithms developed for the deterministic type fractional delay where the delay is compensated using Thiran’s approximation technique. A modified discrete-time sliding surface is proposed to derive the discrete-time sliding mode control algorithms. The algorithm is further extended for the random fractional delay with single packet loss and multiple packet loss situations. The random fractional delay is modelled using Poisson’s distribution function and packet loss is modelled by means of Bernoulli’s function. The condition for closed loop stability in all above situations are derived using the Lyapunov function. Lastly, the efficacy of the proposed DSMC algorithms are demonstrated by extensive simulations and also experimentally validated on a servo system.
Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System (Studies in Systems, Decision and Control #303)
by Keyurkumar Patel Axaykumar MehtaThis book presents few novel Discrete-time Sliding Mode (DSM) protocols for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The protocols intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the protocols are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) protocols using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) protocols, Event-triggered DSM protocols for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM protocols for leader-following consensus of heterogeneous DMASs.Special emphasis is given to the practical implementation of each proposed DSM protocol for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.