Browse Results

Showing 18,651 through 18,675 of 64,114 results

Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends

by T. Maiyalagan Viswanathan S. Saji

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Electrocatalytic Materials

by Mika Sillanpää Sudheesh K. Shukla Santanu Patra

This handbook focuses on electrocatalytic materials, a field that has experienced significant advancements in recent decades, primarily driven by nanoscale catalyst design improvements. These advancements have been crucial in the development and enhancement of alternative energy technologies relying on electrochemical reactions. Electrocatalytic materials play a vital role in reducing over-potentials required for electrochemical device operation. As a prominent subset of catalysts, they facilitate essential reactions for energy conversion and storage through electron transfer processes. However, studying electrocatalytic materials presents challenges due to complex reaction networks, diverse selectivity possibilities, and intricate reaction mechanisms. This book offers an extensive description of electrocatalysis and the materials used in electrocatalytic processes. It covers cutting-edge studies and in-depth discussions on the applications of electrocatalytic materials in energy conversion and storage (including fuel cells, water splitting, batteries, etc.), sensors, and other potential applications. It also addresses the broader implications of electrocatalysis in academia and industry. Each section of the book highlights the latest developments, contemporary challenges, and state-of-the-art investigations aimed at producing valuable outcomes for end users. With contributions from diverse experts, this comprehensive resource is essential for researchers, scientists, industrialists, educators, and students.

Electrocatalytic Materials for Renewable Energy

by Sudheesh K. Shukla Chaudhery Mustansar Hussain Santanu Patra Meenakshi Choudhary

ELECTROCATALYTIC MATERIALS FOR RENEWABLE ENERGY The book provides a comprehensive overview of various electrocatalytic materials and their applications in renewable energy thereby promoting a sustainable and clean energy future for all. As an important branch of catalysts, electrocatalytic materials exhibit important catalytic reactions that can convert and store energy through reactions involving electron transfer. However, the study of electrocatalytic materials presents a huge challenge due to the highly complicated reaction network, the variety of reaction selectivity, and the puzzling reaction mechanisms. Tremendous research efforts have been made toward the fabrication of efficient electrocatalytic materials that can be used in the energy sectors. The book covers a wide range of topics, including the synthesis, characterization, and performance evaluation of electrocatalytic materials for different renewable energy applications. Furthermore, the book discusses the challenges and opportunities associated with the development and utilization of electrocatalytic materials for renewable energy. The future utility of different electrocatalytic materials is also well-defined in the context of the renewable energy approach. The contributors to this book are leading experts in the field of electrocatalytic materials for renewable energy, including scientists and engineers from academia, industry, and national laboratories. Their collective expertise and knowledge provide valuable insights into the latest advances in electrocatalysis for renewable energy applications. Audience This book is intended for researchers and professionals in the fields of materials science, chemistry, physics, and engineering who are interested in the development and utilization of electrocatalytic materials for renewable energy.

Electroceramics for High Performance Supercapicitors

by Inamuddin Tariq Altalhi Sayed Mohammed Adnan

ELECTROCERAMICS FOR HIGH PERFORMANCE SUPERCAPACITORS The book describes the state-of-the-art analyses of high-density supercapacitors. In the near future, high-energy density materials will be required to accommodate the increased demand for gadgets, hybrid cars, and massive electrical energy storage systems. Fuel cells, supercapacitors, and batteries have the highest energy densities, but traditional capacitors have gained attention for intermittent energy harvesting owing to their high energy transfer rate and quick charging/discharging capability. The large amount of electric breakdown strength and modest remnant polarization are keys to the high energy density in dielectric capacitors. Above 100??C or 212??F, polymer dielectric capacitors become unstable and begin to suffer a dielectric breakdown. Hence, dielectric ceramics are the sole viable option for high-temperature applications. This book provides a basic understanding of dielectric-based energy harvesting. After a detailed analysis of the state-of-the-art, it proceeds to explain the specific strategies to enhance energy storage features, including managing the local structure and phases assembly, raising the dielectric width, and enhancing microstructure and electrical uniformity. Also discussed is the need for novel materials with applications in high-density supercapacitors. Audience The book is designed for engineers, industrialists, physicists, scientists, and researchers who work on the applications of high-density supercapacitors.

Electrochemical Analysis of Proteins and Cells

by Genxi Li Peng Miao

Electrochemical Analysis of Proteins and Cells presents the remarkable progress made over the years in the electrochemical analysis of proteins and cells, due to the rapid development of protein electrochemistry together with related technologies such as surface modification, molecular recognition, molecular assembly, and nanotechnology. As an interdisciplinary field combining electrochemistry, analytical chemistry, biochemistry, biophysics, biomedicine and material science, the electrochemical analysis of proteins and cells has attracted broad and extensive research interest. The main emphasis of this book is on the principles of electrochemical strategies and the practical utility of related detection systems, which is of great importance in all biological sciences, such as cell biology and molecular biology, as well as in biomedical fields like cancer research. This brief offers an up-to-date, easy-to-follow presentation of recent advances on the subject and can serve as a supplement for graduate-level courses in analytical chemistry, biochemistry, biophysics, biotechnology, biomedical engineering, etc. It may also help young scientists get an overview of this topic.

Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss (Smart Sensors, Measurement and Instrumentation #30)

by Nasrin Afsarimanesh Subhas Chandra Mukhopadhyay Marlena Kruger

This book presents the design of a robust, portable and low-cost PoC sensing system for the early detection of bone loss. The device can measure the level of CTx-I – one of the most sensitive biochemical markers of bone resorption – in serum and transmit the measured value to an IoT-based cloud server. The selectivity of the sensing system to CTx-I has been achieved by coating the sensor with artificial antibodies, prepared by means of molecular imprinting technology. Explaining all aspects of the system’s development in detail, the book will be of great interest to all engineers, researchers and scientists whose work involves the development of electrochemical sensors and PoC devices.

Electrochemical Biosensors for Whole Blood Analysis

by Fan Xia Hui Li Shaoguang Li Xiaoding Lou

This book illustrates recent advances in developing sensitive and selective electrochemical biosensors for their whole blood application. Known to be a cutting-edge and fast-growing technology, electrochemical biosensors demonstrate their potential in laboratories, industries, and healthcare to achieve specific and direct target detection in complex media, and have become an emerging technology for guiding personalized medicine. The book first demonstrates methods and models to cover the detection of a variety of target molecules in whole blood, including ions, small molecules, nucleic acids, proteins, cells, etc. Then, it provides comments on various detection strategies employed to improve sensors' sensitivity, specificity, selectivity, and reproducibility as well as presenting the laws and principles. In addition, it summarizes achievements and challenges from recent years. Finally, it provides future perspectives and opportunities in electrochemical biosensors including point of care detection, molecular diagnostics and the integration of this sensor platform with multidisciplinary technologies, towards the ultimate goal of personalized medicine. The book integrates abundant viewpoints from multiple sciences and is helpful and valuable to a wide readership in the various fields of biochemistry, biophysics, bioengineering, and pharmaceutics.

Electrochemical Cell Calculations with OpenFOAM (Lecture Notes in Energy #42)

by Steven Beale Werner Lehnert

This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including:• fuel cells;• electrolyzers; and• batteries.Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow’s answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.

Electrochemical Components

by Marie-Cécile Péra

This book focuses on the methods of storage commonly used in hybrid systems. After an introductory chapter reviewing the basics of electrochemistry, Chapter 2 is given over to the storage of electricity in the form of hydrogen. Once hydrogen has been made, we have to be able to convert it back into electricity on demand. This can be done with another energy converter: a fuel cell, the subject of Chapter 3. Such a system is unable to deliver significant dynamics in terms of storage and release of electricity and needs to be supplemented with another solution: a detailed study of supercapacitors is provided in Chapter 4.While the storage systems touched upon in the previous three chapters (hydrogen batteries and supercapacitors) both exhibit advantageous characteristics, at present they are still relatively costly. Thus, the days of the electrochemical accumulator by no means appear to be numbered just yet. This will therefore be the topic of Chapter 5. Finally, on the basis of the elements laid down in the previous chapters, Chapter 6 will focus on electrical hybridization of these storage systems, with a view to enhancing the performance (in terms of energy, lifetime, cost, etc.) of the newly formed system. Aimed at an audience of researchers, industrialists, academics, teachers and students, many exercises, along with corrected solutions, are provided throughout the book. Contents 1. Basic Concepts of Electrochemistry used in Electrical Engineering. 2. Water Electrolyzers. 3. Fuel Cells. 4. Electrical Energy Storage by Supercapacitors. 5. Electrochemical Accumulators. 6. Hybrid Electrical System. About the Authors Marie-Cécile Péra is a Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electric power generation systems (fuel cells – PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. She has contributed to more than 180 articles in international journals and conferences. Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). He has published more than 250 research papers on modeling, control, diagnostics and prognostics of hybrid electrical systems. Hamid Gualous is Full Professor at the University of Caen Lower Normandy in France and director of the LUSAC laboratory. His current research interests include power electronics, electric energy storage, power and energy systems and energy management. Christophe Turpin is Full Researcher at the CNRS (French National Center for Scientific Research). He is responsible for hydrogen activities within the Laboratory LAPLACE, Toulouse, France. His research activities include the characterization and modeling of fuel cells and electrolyzers, the state of health of these components, and their hybridization with other electrochemical components (ultracapacitors, batteries) within optimized energy systems for stationary and aeronautical applications.

Electrochemical Energy: Advanced Materials and Technologies (Electrochemical Energy Storage and Conversion)

by Chao-Yang Wang Jiujun Zhang Xueliang Sun San Ping Jiang Pei Kang Shen

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.

Electrochemical Energy Conversion and Storage

by Yuping Wu Rudolf Holze

This pioneering textbook on the topic provides a clear and well-structured description of the fundamental chemistry involved in these systems, as well as an excellent overview of the real-life practical applications. Prof. Holze is a well-known researcher and an experienced author who guides the reader with his didactic style, and readers can test their understanding with questions and answers throughout the text. Written mainly for advanced students in chemistry, physics, materials science, electrical engineering and mechanical engineering, this text is equally a valuable resource for scientists and engineers working in the field, both in academia and industry.

Electrochemical Exfoliation of Graphene and Its Derivatives: Commercial Applications (Engineering Materials)

by Neeraj Kumar Raju Khan Arpana Parihar Mohd. Abubakar Sadique

The book describes the technique of electrochemical exfoliation, which possesses remarkable ability to bring about transformation. Among various known synthesis methods, the electrochemical exfoliation approach eliminates the use of harsh chemicals and energy-intensive methods commonly linked to the synthesis of graphene. Electrochemical exfoliation utilizes electrical energy to gently remove layers of graphene from its original source, providing a more environmentally friendly method. This precise and careful synchronization heralds a new era in the field of materials science, where the principles of sustainability converge with unmatched performance. Moreover, the benefits extend beyond environmental excellence. This book also examines the complexities of electrochemical exfoliation, highlighting its clear advantage over traditional techniques. The approach demonstrates process in manipulating the structure and properties of graphene, allowing for the customization of specific capabilities to suit a wide range of applications.

Electrochemical Hydrogen Production from Water Splitting: Basic, Materials and Progress

by Shengjie Peng

This book provides a systematic and comprehensive introduction to the fundamentals of hydrogen energy, hydrogen energy-related technologies and systems, and the environmental and economic impacts of hydrogen energy. This book is rich in content, combining theory with practice and reflecting the latest world achievements in hydrogen energy utilization and research. It is used by a wide range of scientific and technologists engaged in the development and utilization of hydrogen energy and other energy sources. It is also referenced for technical workers in power engineering, aerospace, chemistry, chemical engineering, refrigeration, metallurgy, and those engaged in safety management, as well as for teachers and students of related disciplines in higher education institutions. Furthermore, this book makes some modest contribution to the development of hydrogen energy by strengthening the hydrogen energy research teams.

Electrochemical Methods of Nanostructure Preparation (Monographs in Electrochemistry)

by László Péter

This book summarizes the electrochemical routes of nanostructure preparation in a systematic and didactic manner. It provides a comprehensive overview of electrodeposition, anodization, carbon nanotube preparation and other methods of nanostructure fabrication, combining essential information on the physical background of electrochemistry with materials science aspects of the field. The book includes a brief introduction to general electrochemistry with an emphasis on physico-chemical aspects, followed by a description of the sample preparation methods. In each chapter, an overview of the particular method is accompanied by a discussion of the relevant physical or chemical properties of the materials, including magnetic, mechanical, optical, catalytic, sensoric and other features. While some preparation methods are discussed in connection with the theories of physical electrochemistry (e.g. electrodeposition), the book also covers methods that are more heuristic but nonetheless utilize electric current (e.g. anodization of porous alumina or synthesis of carbon nanotubes by means of electric arc discharge).

Electrochemical Nanotechnologies

by Madhav Datta Tetsuya Osaka Yosi Shacham-Diamand

In this book, the term "electrochemical nanotechnology" is defined as nanoprocessing by means of electrochemical techniques. This introductory book reviews the application of electrochemical nanotechnologies with the aim of understanding their wider applicability in evolving nanoindustries. These advances have impacted microelectronics, sensors, materials science, and corrosion science, generating new fields of research that promote interaction between biology, medicine, and microelectronics. This volume reviews nanotechnology applications in selected high technology areas with particular emphasis on advances in such areas. Chapters are classified under four different headings: Nanotechnology for energy devices - Nanotechnology for magnetic storage devices - Nanotechnology for bio-chip applications - Nanotechnology for MEMS/Packaging.

Electrochemical Oxygen Reduction: Fundamental and Applications

by Pei Kang Shen

This book discusses systematically the theoretical research and the applications of electrochemical oxygen reduction. Oxygen reduction reaction is a common issue in electrochemistry, but is also an important process involved in the field of energy, cryogenic fuel cells, metal–air cells, oxygen sensors and hydrogen peroxide preparation. This book is divided into 6 chapters; it starts with a description of dynamic mechanisms, followed by a detailed introduction on the related experimental methods and related catalyst preparation technology. By providing the basic methods and testing techniques, and by demonstrating their applications, it helps readers gain a better understanding of oxygen reduction reactions, making it a valuable resource for the industrialization of scientific research achievements. Accordingly, the book appeals to a broad readership, particularly graduate students, those working at universities and research organizations, and industrial researchers.

Electrochemical Polymer Electrolyte Membranes (ISSN)

by Jiujun Zhang David P. Wilkinson Jinli Qiao Jianhua Fang

Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Disc

Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors (The ECS Series of Texts and Monographs)

by Vladimir S. Bagotsky Alexander M. Skundin Yurij M. Volfkovich

Electrochemical Power Sources (EPS) provides in a concise way the operational features, major types, and applications of batteries, fuel cells, and supercapacitors* Details the design, operational features, and applications of batteries, fuel cells, and supercapacitors* Covers improvements of existing EPSs and the development of new kinds of EPS as the results of intense R&D work* Provides outlook for future trends in fuel cells and batteries* Covers the most typical battery types, fuel cells and supercapacitors; such as zinc-carbon batteries, alkaline manganese dioxide batteries, mercury-zinc cells, lead-acid batteries, cadmium storage batteries, silver-zinc batteries and modern lithium batteries

Electrochemical Processes and Corrosion in Reinforced Concrete

by Paul Chess

Some reinforced concrete structures prematurely corrode as they age, with significant financial implications, but it is not immediately clear why some are more durable than others. This book looks at the various mechanisms for corrosion and how what seemed to be a relatively simple matter has become more complex the further it is understood due to the properties of concrete, steel and the way reinforced concrete structures are constructed. The significance of electrochemical processes is identified with recent research using new technology discussed. Specialist contractors, consultants and owners of corrosion damaged structures will find this an extremely useful resource. It will also be a valuable reference for students at postgraduate level.

Electrochemical Processes in Biological Systems

by Andrzej Lewenstam Lo Gorton Andrzej Wieckowski

The first book to provdie a comprehensive look at bioenergetics, the energy flow in living systems, by studying ion exchange and electron transfer processes in biological membranes and artificial bio-films, and how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells. The book: Discusses the ion fluxes and electron transfer processes in biological membranes and artificial bio-films Provides an in-depth description of the processes at the interface between the membrane/film and substrate electrode Is the first of its kind to provide a comprehensive look at how these processes are understood in biology of living cells Addresses how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells

Electrochemical Production of Metal Powders

by Stojan S. Djokić

This new volume of Modern Aspects of Electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries.

Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies (Electrochemical Energy Storage And Conversion Ser. #11)

by Jinli Qiao Yuyu Liu Jiujun Zhang

For Researchers, Students, Industrial Professionals, and ManufacturersElectrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies is your guide to improved catalytic performance in the electrochemical reduction of carbon dioxide (CO2). Written by electrochemical energy scientists actively involved in environmental research and develo

Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (Electrochemical Energy Storage and Conversion #1)

by Jiujun Zhang Aiping Yu Victor Chabot

Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.

Electrochemical Techniques in Corrosion Science and Engineering (Corrosion Technology Ser. #Vol. 18)

by Rudolph G. Buchheit Robert G. Kelly John R. Scully David Shoesmith

This book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficac

Electrochemical Technologies for Energy Storage and Conversion

by Jiujun Zhang Lei Zhang Hansan Liu Xueliang Sun Ru-Shi Liu

In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.

Refine Search

Showing 18,651 through 18,675 of 64,114 results