- Table View
- List View
Discrete Computational Mechanics of Masonry Structures (CISM International Centre for Mechanical Sciences #609)
by Maurizio Angelillo Katalin BagiThis book provides an overview to those most important modern and traditional methods of masonry analysis that are able to capture the discrete internal built-up of masonry structures. Such methods are available in a wide variety today – from computational packages based on classical graphical statics techniques through discrete element methods or the most sophisticated no-tension semi-continuum models – , and this book reviews their theoretical foundations, as well as their advantages and preferable fields of application, also calling the attention on their limitations so that the reader could build up a critical view of the choices they have when attacking a masonry mechanics problem. The book gives a basis for the readers to become able to develop their own methods, inspired either by classical graphical statics, or by any modern technique they find promising.
Discrete Control Systems
by Yoshifumi OkuyamaDiscrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systems for continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist-Hall and Nichols diagrams are presented and discretized proportional-integral-derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete event systems. The nonlinear phenomena associated with practically important event-driven systems are elucidated. The dynamics and stability of finite-state and discrete-event systems are defined. Academic researchers interested in the uses of discrete modelling and control of continuous systems will find Discrete Control Systems instructive. The inclusion of end-of-chapter problems also makes the book suitable for use in self study either by professional control engineers or graduate students supplementing a more formal regimen of learning.
Discrete Cosine Transform, Second Edition
by Humberto Ochoa-Dominguez K. R. RaoMany new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.
Discrete Cuckoo Search for Combinatorial Optimization (Springer Tracts in Nature-Inspired Computing)
by Aziz OuaarabThis book provides a literature review of techniques used to pass from continuous to combinatorial space, before discussing a detailed example with individual steps of how cuckoo search (CS) can be adapted to solve combinatorial optimization problems. It demonstrates the application of CS to three different problems and describes their source code. The content is divided into five chapters, the first of which provides a technical description, together with examples of combinatorial search spaces. The second chapter summarizes a diverse range of methods used to solve combinatorial optimization problems. In turn, the third chapter presents a description of CS, its formulation and characteristics. In the fourth chapter, the application of discrete cuckoo search (DCS) to solve three POCs (the traveling salesman problem, quadratic assignment problem and job shop scheduling problem) is explained, focusing mainly on a reinterpretation of the terminology used in CS and its source of inspiration. In closing, the fifth chapter discusses random-key cuckoo search (RKCS) using random keys to represent positions found by cuckoo search in the TSP and QAP solution space.
Discrete Dynamics: Basic Theory and Examples (Mathematical Engineering)
by Andrea BacciottiThis book offers a complete and detailed introduction to the theory of discrete dynamical systems, with special attention to stability of fixed points and periodic orbits. It provides a solid mathematical background and the essential basic knowledge for further developments such as, for instance, deterministic chaos theory, for which many other references are available (but sometimes, without an exhaustive presentation of preliminary notions). Readers will find a discussion of topics sometimes neglected in the research literature, such as a comparison between different predictions achievable by the discrete time model and the continuous time model of the same application. Another novel aspect of this book is an accurate analysis of the way a fixed point may lose stability, introducing and comparing several notions of instability: simple instability, repulsivity, and complete instability. To help the reader and to show the flexibility and potentiality of the discrete approach to dynamics, many examples, numerical simulations, and figures have been included. The book is used as a reference material for courses at a doctoral or upper undergraduate level in mathematics and theoretical engineering.
Discrete Element Method for Multiphase Flows with Biogenic Particles: Agriculture Applications
by Ling Zhou Ramesh K. Agarwal Weidong Shi Mahmoud A. ElemamThis book presents the advanced theory and application of the combined Computational Fluid Dynamics – Discrete Element Method (CFD-DEM) to multiphase flow simulations of the gas and bio-particulate matter of non-uniformly shaped biomass. It explores how DEM can simulate the complex behaviour of biomass particles, such as their packing in the multiphase flows that occurs in the agricultural product processing industries. It offers an overview of aerodynamic systems, such as cyclone separators, used in the agricultural processing industry. A detailed description of DEM modeling, including the particle-particle, particle-boundary, and particle-fluid interactions in the context of biomass particles of varying sizes and shapes, is provided. Coverage includes the critical application of CFD-DEM simulation technology in designing and optimizing grain handling and processing equipment and the application of extended DEM to other granular flows of complex particles like sand, powders, and dust from mines where clumping and agglomeration occur. The application of DEM in modeling and simulation of complex multiphase systems can help improve productivity, reduce costs, and increase efficiency in the agricultural industry.
Discrete Element Method in the Design of Transport Systems: Verification and Validation of 3D Models
by Daniel Gelnar Jiri ZegzulkaThis book deals with the design and optimization of the bucket elevator using the discrete element method (DEM). It describes the underlying scientific basis for the design of transport equipment using computer simulations and is focused on issues relevant to the industrial sector, mechanical engineering; and the transport, treatment, measurement, and storage of bulk materials. It presents solutions for mitigating bulk material supply chain interruptions due to process malfunctions and failures, utilizing research on monitoring and evaluating of the dynamic processes of particulate matter.The aim of the book is to help readers new to the field with the design of innovative devices. Imparting practical information aimed at saving time and money in project design, the book is ideal for engineers, designers, and researchers concerned with all aspects of bulk materials.Introduces and explains fully the Discrete Element Method using measured values as inputs for the method;Shows whether calculated simulations and real measured values models can be used for design;Illustrates how to validate, calibrate, and optimize the dynamic processes of bulk elevators;Explains how to test transport and storage equipment before it is produced using dynamic simulation of material flow on transport lines, saving time and money.
Discrete Element Method to Model 3D Continuous Materials
by Inigo Terreros Mohamed Jebahi Ivan Iordanoff Damien AndreComplex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects.
Discrete Event Simulation: A Practical Approach (Computer Science & Engineering)
by Udo W. Pooch James A. WallDiscrete Event Simulation is a process-oriented text/reference that utilizes an eleven-step model to represent the simulation process from problem formulation to implementation and documentation. The book presents the necessary level of detail required to fully develop a model that produces meaningful results and considers the tools necessary to interpret those results. Sufficient background information is provided so that the underlying concepts of simulation are understood.Major topics covered in Discrete Event Simulation include probability and distributional theory, statistical estimation and inference, the generation of random variates, verification and validation techniques, time management methods, experimental design, and programming language considerations. The book also examines distributed simulation and issues related to distributing the physical process over a network of tightly coupled processors. Topics covered in this area include deadlock, synchronization, rollback, event management, and communication processes.Fully worked examples and numerous practical exercises have been drawn from the engineering disciplines and computer science, although they have been structured so that they will be useful as well to other disciplines such as economics, business administration, and management science. The presentation of techniques and methods in Discrete Event Simulation make it an ideal text/reference for all practitioners of discrete event simulation.
Discrete Event Systems
by Moamar Sayed-MouchawehDiscrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DESs). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. This book classifies the different techniques and approaches according to several criteria such as: modeling tools (Automata, Petri nets, Templates) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing, data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis; as well as the complexity (polynomial, exponential) of the algorithm that is used to determine the set of faults that the proposed approach is able to diagnose as well as the delay time required for this diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book will include illustrated examples of the presented methods and techniques as well as a discussion on the application of these methods on several real-world problems.
Discrete Mathematical Structures: A Succinct Foundation (Mathematics and its Applications)
by Hemen Dutta B. V. KumarThis book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Discrete Mathematics and Graph Theory: A Concise Study Companion and Guide (Undergraduate Topics in Computer Science)
by K. ErciyesThis textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
Discrete Mathematics, Probability Theory and Stochastic Processes: For Applications in Engineering and Computer Science (Modeling and Optimization in Science and Technologies #20)
by Samir Brahim Belhaouari Halima Bensmail Farshid MehrdoustThis book provides a comprehensive overview of discrete mathematics, probability theory, and stochastic processes, covering a wide range of topics in each area. It is designed to be a self-contained resource for students and professionals wishing to improve their understanding of these important mathematical concepts. The book takes a practical approach to the subject matter, providing real-world examples and applications to help readers understand how these mathematical concepts are used in various fields, such as computer science, engineering, and finance.
Discrete Mathematics: for New Technology
by John Taylor Rowan GarnierIn a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics.
Discrete Problems in Nature Inspired Algorithms
by Ritu Tiwari Anupam ShuklaThis book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.
Discrete Random Signal Processing and Filtering Primer with MATLAB (Electrical Engineering and Applied Signal Processing Series)
by Alexander D. PoularikasEngineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering.Numerous Useful Examples, Problems, and Solutions – An Extensive and Powerful ReviewWritten for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offers a solid review of recent developments in discrete signal processing. The book also details the latest progress in the revolutionary MATLAB language.A Practical Self-Tutorial That Transcends TheoryThe author introduces an incremental discussion of signal processing and filtering, and presents several new methods that can be used for a more dynamic analysis of random digital signals with both linear and non-linear filtering. Ideal as a self-tutorial, this book includes numerous examples and functions, which can be used to select parameters, perform simulations, and analyze results. This concise guide encourages readers to use MATLAB functions – and those new ones introduced as Book MATLAB Functions – to substitute many different combinations of parameters, giving them a firm grasp of how much each parameter affects results. Much more than a simple review of theory, this book emphasizes problem solving and result analysis, enabling readers to take a hands-on approach to advance their own understanding of MATLAB and the way it is used within signal processing and filtering.
Discrete Signals and Systems with MATLAB® (Electrical Engineering Textbook Ser.)
by Taan S. ElAliThe subject of Discrete Signals and Systems is broad and deserves a single book devoted to it. The objective of this textbook is to present all the required material that an undergraduate student will need to master this subject matter and the use of MATLAB. This book is primarily intended for electrical and computer engineering students, and especially for use by juniors or seniors in these undergraduate engineering disciplines. It can also be very useful to practicing engineers. It is detailed, broad, based on mathematical basic principles, focused, and it also contains many solved problems using analytical tools as well as MATLAB. The book is ideal for a one-semester course in the area of discrete linear systems or digital signal processing, where the instructor can cover all chapters with ease. Numerous examples are presented within each chapter to illustrate each concept when and where it is presented. Most of the worked-out examples are first solved analytically and then solved using MATLAB in a clear and understandable fashion.
Discrete Simulation and Animation for Mining Engineers
by John SturgulGeneral Purpose Simulation System (GPSS) is a special computer programming language primarily used to simulate what can be classified as discrete systems. A discrete system is one where, at any given instant in time, a countable number of things can take place. The basic operation of a mine itself can be considered such a system. Discrete Simulatio
Discrete Stochastic Models and Applications for Reliability Engineering and Statistical Quality Control
by Serkan EryilmazDiscrete stochastic models are tools that allow us to understand, control, and optimize engineering systems and processes. This book provides real-life examples and illustrations of models in reliability engineering and statistical quality control and establishes a connection between the theoretical framework and their engineering applications. The book describes discrete stochastic models along with real-life examples and explores not only well-known models, but also comparatively lesser known ones. It includes definitions, concepts, and methods with a clear understanding of their use in reliability engineering and statistical quality control fields. Also covered are the recent advances and established connections between the theoretical framework of discrete stochastic models and their engineering applications. An ideal reference for researchers in academia and graduate students working in the fields of operations research, reliability engineering, quality control, and probability and statistics.
Discrete Stochastic Processes and Optimal Filtering (Wiley-iste Ser.)
by Jean-Claude Bertein Roger CeschiOptimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.
Discrete Stochastic Processes and Optimal Filtering (Wiley-iste Ser.)
by Jean-Claude Bertein Roger CeschiOptimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using Matlab.
Discrete Systems and Digital Signal Processing with MATLAB (Electrical Engineering Textbook Ser.)
by Taan S. ElAli"Discrete linear systems and digital signal processing have been treated for years in separate publications. ElAli has skillfully combined these two subjects into a single and very useful volume. � Useful for electrical and computer engineering students and working professionals� a nice addition to the shelves of academic and public libraries. "Sum
Discrete Taylor Transform and Inverse Transform
by Alireza Baghai-WadjiRevolutionize the calculation of mixed derivatives with this groundbreaking text Transform and inverse transform techniques, such as the Fourier transform and the Laplace transform, enable scientists and engineers to conduct research and design in transformed domains where the work is simpler, after which the results can be converted back into the real domain where they can be applied or actualized. This latter stage in the process, the inverse transform, ordinarily poses significant challenges. New transform/inverse transform techniques carry extraordinary potential to produce revolutionary new science and engineering solutions. Discrete Taylor Transform and Inverse Transform presents the groundbreaking discovery of a new transform technique. Placing a novel emphasis on the “position variable” and “derivative operator” as main actors, the Discrete Taylor Transform and Inverse Transform (D-TTIT) will facilitate the calculation of mixed derivatives of multivariate functions to any desired order. The result promises to create new applications not only in its allied fields of quantum physics and quantum engineering, but potentially much more widely. Readers will also find: Discussion of possible applications in electrical engineering, acoustics, photonics, and many more Analysis of functions depending on one, two, or three independent variables Tools for theoreticians and practitioners to design their own algorithms for solving specific boundary-value problems Discrete Taylor Transform and Inverse Transform is ideal for any scientific or engineering professional looking to understand a cutting-edge research and design tool.
Discrete Time Systems and Signal Processing
by S. PalaniThis book is designed to serve as a textbook for courses offered to undergraduate students enrolled in the Electrical, Electronics, Communications, and Instrumentation Engineering disciplines. The book presents a clear and comprehensive introduction to digital signal processing. For easier comprehension, the course contents of all the chapters are in sequential order. A variety of examples and solved problems are included in the book to enable application and ease of understanding of theoretical concepts. Every chapter contains several homework problems with answers followed by question-and-answer-type assignments. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in electrical engineering and related programs.
Discrete Wavelet Transform: A Signal Processing Approach (Coursesmart Ser.)
by D. SundararajanProvides easy learning and understanding of DWT from a signal processing point of view Presents DWT from a digital signal processing point of view, in contrast to the usual mathematical approach, making it highly accessible Offers a comprehensive coverage of related topics, including convolution and correlation, Fourier transform, FIR filter, orthogonal and biorthogonal filters Organized systematically, starting from the fundamentals of signal processing to the more advanced topics of DWT and Discrete Wavelet Packet Transform. Written in a clear and concise manner with abundant examples, figures and detailed explanations Features a companion website that has several MATLAB programs for the implementation of the DWT with commonly used filters “This well-written textbook is an introduction to the theory of discrete wavelet transform (DWT) and its applications in digital signal and image processing.” -- Prof. Dr. Manfred Tasche - Institut für Mathematik, Uni Rostock Full review at https://zbmath.org/?q=an:06492561