- Table View
- List View
Dynamic and Precise Engineering Surveying
by Qingquan LiDriven by the increasingly expanding needs of infrastructure construction, operation and maintenance, as well as the rapid developments of intelligent sensing and information technology, precise engineering surveying has been transformed from static, discrete, and manual into dynamic, continuous, and intelligent ways. This transformation leads to an advanced multidisciplinary field, dynamic and precise engineering surveying, on which the author has worked for over two decades. This book systematically summarizes the fundamentals, methods, and applications in dynamic and precise engineering surveying. The contents mainly include two parts: the first part introduces principles and methods of dynamic and precise engineering surveying; the second part presents representative applications in which innovative methods and advanced equipment are applied in the construction, operation and maintenance of mega and complex infrastructures.Readers engaged in surveying and mapping, civil engineering, water conservancy engineering, railway engineering, electronic information, and computer science, including undergraduates, graduates, researchers and engineers, will find it an informative reference.
Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components (Springer Theses)
by Sara NagelbergThis thesis builds on recent innovations in multi-phase emulsion droplet design to demonstrate that emulsion morphologies enable a useful variety of dynamic optical phenomena. Despite the highly dynamic nature of fluid morphologies and their utility for stimuli-responsive, dynamic optical materials and devices, fluid matter is underrepresented in optical technology. Using bi-phase emulsion droplets as refractive micro-optical components, this thesis realizes micro-scale fluid compound lenses with optical properties that vary in response to changes in chemical concentrations, structured illumination, and thermal gradients. Theoretical considerations of emulsions as optical components are used to explain a previously unrecognized total internal reflection-enabled light interference phenomenon in emulsion droplets that results in rich structural coloration. While this work is focused on the fundamental optics of emulsion droplets, it also facilitates the use of light-emitting emulsion morphologies as chemo-optical transducers for early-stage food-borne pathogen detection. This thesis beautifully demonstrates the virtue of fundamental interdisciplinary exploration of unconventional material systems at the interface of optics, chemistry, and materials science, and the benefits arising from translation of the acquired knowledge into specific application scenarios.
Dynamic land use/cover change modelling
by Jamal Jokar ArsanjaniThe thesis is an original and novel contribution to land use/land cover change analysis using methods of geosimulation and agent-based modeling. The author implements several traditional methodologies of land use change by means of remote sensing and GIS techniques. An Agent-Based Model was developed in order to simulate land use change in the Tehran metropolitan area, comparing the outcomes of each particular methodology. All methods are compared, and advantages and disadvantages discussed.
Dynamic of Soil in Ground-Borne Vibration Mitigation: Design, Application, and Predictive Approaches
by Mehran NaghizadehIn the heart of big cities, a less obvious challenge exists right under our feet. The everyday activities of city life, like traffic, construction, and industrial work, do more than just create noise. They send vibrations through the ground, which can be problematic, sometimes even destabilizing buildings and affecting the people who live there. This modern issue needs a modern solution. This book introduces the concept of trenches filled with a material called geofoam, an innovative method to control these ground vibrations. Mehran Naghizadeh delves into a detailed study to see how placing these trenches in specific locations can help protect against these vibrations. The book walks through various automated 2D and 3D models, demonstrating how the trenches can be effectively used to protect areas close to and far from the source of vibrations. The study goes beyond just explaining what these trenches are and how they work. It looks into the reasons behind their design, examining different trench shapes and how each shape helps in managing these underground vibrations. The challenge is more complex than it seems. The ground we walk on is not just a single layer but has different layers with various properties. This book takes you on a journey to understand how these layers influence the effectiveness of our vibration warriors. It’s an exploration of how every layer in the soil contributes to managing vibrations.
Dynamic of Tubing String in Complex Oil and Gas Well: Theory and Application
by Jun Liu Xiaoqiang Guo Xinye LiThis book presents dynamic response, vibration characteristics, and nonlinear behavior of complex oil and gas well string by using a combination of theoretical methods, numerical simulation, and experimental analysis. It lays both theoretical and experimental foundation for the design of oil and gas well string parameters. The theoretical methods involved mainly include Hamilton's principle, finite element method, and energy method, while experimental methods involved include similarity principle, vibration testing method, and modal analysis method. It is a valuable reference for both scholars and practitioners working in the fields of petroleum, mining, and geological research, as well as research institutes related to oil and gas resource exploration.
Dynamic-Mismatch Mapping for Digitally-Assisted DACs
by Arthur Van Roermund Yongjian Tang Hans HegtThis book describes a novel digital calibration technique called dynamic-mismatch mapping (DMM) to improve the performance of digital to analog converters (DACs). Compared to other techniques, the DMM technique has the advantage of calibrating all mismatch errors without any noise penalty, which is particularly useful in order to meet the demand for high performance DACs in rapidly developing applications, such as multimedia and communication systems.
Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems
by Yuan DongThis thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.
Dynamical Behaviors of Fractional-Order Complex Dynamical Networks
by Jin-Liang WangThis book benefits researchers, engineers, and graduate students in the field of fractional-order complex dynamical networks. Recently, the dynamical behaviors (e.g., passivity, finite-time passivity, synchronization, and finite-time synchronization, etc.) for fractional-order complex networks (FOCNs) have attracted considerable research attention in a wide range of fields, and a variety of valuable results have been reported. In particular, passivity has been extensively used to address the synchronization of FOCNs.
Dynamical Chaos in Planetary Systems (Astrophysics and Space Science Library #463)
by Ivan I. ShevchenkoThis is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.
Dynamical Mean-Field Theory for Strongly Correlated Materials
by Volodymyr TurkowskiThis is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.
Dynamical Phase Transitions in Chaotic Systems (Nonlinear Physical Science)
by Edson Denis LeonelThis book discusses some scaling properties and characterizes two-phase transitions for chaotic dynamics in nonlinear systems described by mappings. The chaotic dynamics is determined by the unpredictability of the time evolution of two very close initial conditions in the phase space. It yields in an exponential divergence from each other as time passes. The chaotic diffusion is investigated, leading to a scaling invariance, a characteristic of a continuous phase transition. Two different types of transitions are considered in the book. One of them considers a transition from integrability to non-integrability observed in a two-dimensional, nonlinear, and area-preserving mapping, hence a conservative dynamics, in the variables action and angle. The other transition considers too the dynamics given by the use of nonlinear mappings and describes a suppression of the unlimited chaotic diffusion for a dissipative standard mapping and an equivalent transition in the suppression of Fermi acceleration in time-dependent billiards. This book allows the readers to understand some of the applicability of scaling theory to phase transitions and other critical dynamics commonly observed in nonlinear systems. That includes a transition from integrability to non-integrability and a transition from limited to unlimited diffusion, and that may also be applied to diffusion in energy, hence in Fermi acceleration. The latter is a hot topic investigated in billiard dynamics that led to many important publications in the last few years. It is a good reference book for senior- or graduate-level students or researchers in dynamical systems and control engineering, mathematics, physics, mechanical and electrical engineering.
Dynamical System Synchronization
by Albert C. LuoDynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques.
Dynamical System and Chaos: An Introduction with Applications (UNITEXT for Physics)
by Rui DilãoThis textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful. The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters.
Dynamical Systems
by Albert C. LuoDynamical Systems: Discontinuous, Stochasticity and Time-Delay provides an overview of the most recent developments in nonlinear dynamics, vibration and control. This book focuses on the most recent advances in all three areas, with particular emphasis on recent analytical, numerical and experimental research and its results. Real dynamical system problems, such as the behavior of suspension systems of railways, nonlinear vibration and applied control in coal manufacturing, along with the multifractal spectrum of LAN traffic, are discussed at length, giving the reader a sense of real-world instances where these theories are applied. Dynamical Systems: Discontinuous, Stochasticity and Time-Delay also contains material on time-delay systems as they relate to linear switching, dynamics of complex networks, and machine tools with multiple boundaries. It is the ideal book for engineers and academic researchers working in areas like mechanical and control engineering, as well as applied mathematics.
Dynamical Systems and Control (Stability and Control: Theory, Methods and Applications)
by George Leitmann Firdaus E. Udwadia H. I. WeberThe 11th International Workshop on Dynamics and Control brought together scientists and engineers from diverse fields and gave them a venue to develop a greater understanding of this discipline and how it relates to many areas in science, engineering, economics, and biology. The event gave researchers an opportunity to investigate ideas and techniq
Dynamical Systems and Methods
by Albert C. Luo José António Machado Dumitru BaleanuNonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
Dynamical Systems in Applications: Poland December 11 -14 2017 (Springer Proceedings in Mathematics & Statistics #249)
by Jan AwrejcewiczThe book is intended for all those who are interested in application problems related to dynamical systems. It provides an overview of recent findings on dynamical systems in the broadest sense. Divided into 46 contributed chapters, it addresses a diverse range of problems. The issues discussed include: Finite Element Analysis of optomechatronic choppers with rotational shafts; computational based constrained dynamics generation for a model of a crane with compliant support; model of a kinetic energy recuperation system for city buses; energy accumulation in mechanical resonance; hysteretic properties of shell dampers; modeling a water hammer with quasi-steady and unsteady friction in viscoelastic conduits; application of time-frequency methods for the assessment of gas metal arc welding conditions; non-linear modeling of the human body’s dynamic load; experimental evaluation of mathematical and artificial neural network modeling for energy storage systems; interaction of bridge cables and wake in vortex-induced vibrations; and the Sommerfeld effect in a single DOF spring-mass-damper system with non-ideal excitation.
Dynamical Systems in Theoretical Perspective: Poland December 11 -14 2017 (Springer Proceedings in Mathematics & Statistics #248)
by Jan AwrejcewiczThis book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painlevé equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.
Dynamical Systems-Based Soil Mechanics
by Paul JosephThis book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log ? line is linear, and why C?/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering. The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.
Dynamical Tunneling: Theory and Experiment
by Srihari Keshavamurthy Peter SchlagheckA prominent aspect of quantum theory, tunneling arises in a variety of contexts across several fields of study, including nuclear, atomic, molecular, and optical physics and has led to technologically relevant applications in mesoscopic science. Exploring mechanisms and consequences, Dynamical Tunneling: Theory and Experiment presents the work of i
Dynamically Structured Flow in Pulsed Fluidised Beds (Springer Theses)
by Kaiqiao WuThis book analyses the use of a pulsed gas flow to structure bubbling gas-solid fluidised beds and to induce a special fluidisation state, called "dynamically structured flow", as a promising approach to process intensification. It explores the properties of bubbles rising in staggered periodic arrays without direct interaction, assessing their size, separation, and velocity, and explains how a highly uniform, scalable flow offers tight control over the system hydrodynamics. These features are desirable, as they not only bypass engineering challenges occurring in traditional operations, such as maldistribution and non-uniform contact, but also allow to decouple conflicting design objectives, such as mixing and gas-solid contact. The thesis also presents computational simulations which reveal the periodic transitions of the particulate phase between fluid-like and solid-like behaviour. This book will be of interest to researchers, engineers, and graduate students alike, particularly those working in industrial drying, combustion, and chemical production.
Dynamics (Dover Civil and Mechanical Engineering)
by Lawrence E. Goodman William H. WarnerBeginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.
Dynamics On and Of Complex Networks
by Animesh Mukherjee Andreas Deutsch Niloy GangulyThis self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Topics covered include complex networks found in nature--genetic pathways, ecological networks, linguistic systems, and social systems--as well as man-made systems such as the World Wide Web and peer-to-peer networks. The contributed chapters in this volume are intended to promote cross-fertilization in several research areas, and will be valuable to newcomers in the field, experienced researchers, practitioners, and graduate students interested in systems exhibiting an underlying complex network structure in disciplines such as computer science, biology, statistical physics, nonlinear dynamics, linguistics, and the social sciences.
Dynamics On and Of Complex Networks III: Machine Learning and Statistical Physics Approaches (Springer Proceedings in Complexity)
by Bivas Mitra Fakhteh Ghanbarnejad Rishiraj Saha Roy Fariba Karimi Jean-Charles DelvenneThis book bridges the gap between advances in the communities of computer science and physics--namely machine learning and statistical physics. It contains diverse but relevant topics in statistical physics, complex systems, network theory, and machine learning. Examples of such topics are: predicting missing links, higher-order generative modeling of networks, inferring network structure by tracking the evolution and dynamics of digital traces, recommender systems, and diffusion processes.The book contains extended versions of high-quality submissions received at the workshop, Dynamics On and Of Complex Networks (doocn.org), together with new invited contributions. The chapters will benefit a diverse community of researchers. The book is suitable for graduate students, postdoctoral researchers and professors of various disciplines including sociology, physics, mathematics, and computer science.
Dynamics On and Of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems
by Animesh Mukherjee Niloy Ganguly Bivas Mitra Fernando Peruani Monojit ChoudhuryThis self-contained book systematically explores the statistical dynamics on and of complex networks with a special focus on time-varying networks. In the constantly changing modern world, there is an urgent need to understand problems related to systems that dynamically evolve in either structure or function, or both. This work is an attempt to address such problems in the framework of complex networks. Dynamics on and of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems is a collection of surveys and cutting-edge research contributions exploring key issues, challenges, and characteristics of dynamical networks that emerge in various complex systems. Toward this goal, the work is thematically organized into three main sections with the primary thrust on time-varying networks: Part I studies social dynamics; Part II focuses on community identification; and Part III illustrates diffusion processes. The contributed chapters in this volume are intended to promote cross-fertilization in several research areas and will be valuable to newcomers in the field, experienced researchers, practitioners, and graduate students interested in pursuing research in dynamical networks with applications to computer science, statistical physics, nonlinear dynamics, linguistics, and the social sciences. This volume follows Dynamics On and Of Complex Networks: Applications to Biology, Computer Science, and the Social Sciences (2009), ISBN 978-0-8176-4750-6.