- Table View
- List View
Dynamics of Soil and Modelling of Geotechnical Problems: Proceedings of Indian Geotechnical Conference 2020 Volume 5 (Lecture Notes in Civil Engineering #186)
by A. Murali Krishna C. N. V. Satyanarayana Reddy Neelima SatyamThis book provides information on the latest technological developments taking place in Geotechnical engineering, pertaining to Soil Dynamics and Modelling of Geotechnical Problems. The book is useful for the academicians and working professionals with coverage of both theoretical and practical aspects of Dynamics of Soil and Modelling studies on Geotechnical problems based on research findings and site specific inputs. The book serves as a useful reference resource for graduate and postgraduate students of civil engineering and contents of the book are helpful to the postgraduate students and research scholars in carrying out the research.
Dynamics of Soils and Their Engineering Applications
by Swami SaranThe book offers systematic dynamic analysis of soils and their engineering applications, including machine foundations, and aims to develop a clear understanding of the subject. It comprises sixteen chapters. Chapter 1 introduces the reader to the various problems in soil dynamics. In Chapter 2, concepts of theory of vibrations are discussed along with their applications in designing Vibration Absorbers and Pickups. Wave propagation in elastic medium including wave refraction in layered medium is covered in Chapter 3. Chapter 4 deals with the procedure of determining dynamic properties of soils using various laboratory and field tests. Dynamic earth pressures in retaining walls and dynamic bearing capacity of footings are dealt with in Chapters 5 and 6 respectively. Chapters 7and 8 respectively deal with dynamic behavior of pile foundations and slopes. Causes of liquefaction of soils and prediction of liquefaction potential have been discussed in Chapter 9. In Chapter 10, the procedure of estimating the unbalanced forces in various types of machines are covered. Chapters 11, 12 and 13 deal with the analysis and design of foundations of reciprocating machine, hammer, and turbo-generators respectively. In Chapter 14, problems of vibration isolation and screening are dealt with. Chapter 15 discusses the analysis and design of reinforced earth wall located in seismic areas. A new concept of a conventional rigid retaining wall having reinforced backfill is presented in Chapter 16, giving complete analysis and design procedure considering seismic forces.
Dynamics of Structure and Foundation - A Unified Approach: 1. Fundamentals
by Indrajit Chowdhury Shambhu P. DasguptaDesigned to provide engineers with quick access to current and practical information on the dynamics of structure and foundation, this unique work, consisting of two separately available volumes, serves as a complete reference, especially for those involved with earthquake or dynamic analysis, or the design of machine foundations in the oil, gas, a
Dynamics of Structure and Foundation - A Unified Approach: 2. Applications
by Indrajit Chowdhury Shambhu P. DasguptaDesigned to provide engineers with quick access to current and practical information on the dynamics of structure and foundation, this 2-volume reference work is intended for engineers involved with earthquake or dynamic analysis, or the design of machine foundations in the oil, gas, and energy sector. Whereas Volume 1 (ISBN 9780415471459
Dynamics of Structures
by J. HumarThis major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibratio
Dynamics of Structures
by Patrick PaultreThis book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to students of the subject. Key features: Examines the effects of loads, impacts, and seismic forces on the materials used in the construction of buildings, bridges, tunnels, and more Structural dynamics is a critical aspect of the design of all engineered/designed structures and objects - allowing for accurate prediction of their ability to withstand service loading, and for knowledge of failure-causeing or critical loads
Dynamics of Structures: Oscillations/Vibrations
by Levon Gregory PetrosianThis book presents dynamic calculation in the context of structural mechanics and civil engineering. It explains the process of testing the strength of structures and determining the dynamic displacements, velocities, and accelerations, whose values; as measured by the influence of vibrations on people, and certain types of precision equipment, such as measuring instruments, high-precision machines, and equipment for microelectronics production, should not exceed the permissible limits. The first part of the book (15 chapters) is ideal as a textbook for advanced undergraduate, graduate, or post-graduate students taking their first course in structural dynamics. This text can be used for two semesters. In addition, the book will serve as a primary reference for practicing engineers and research workers, as well as a self-study guide for students, researchers, and professional engineers. The second part of the book (chapter 16 onwards) is intended mainly for professionals and specialists in the field of dynamics of structures and related areas.
Dynamics of Systems on the Nanoscale (Lecture Notes in Nanoscale Science and Technology #34)
by Ilia A. Solov’yov Alexey V. Verkhovtsev Andrei V. Korol Andrey V. Solov’yovThis book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.
Dynamics of Tethered Space Systems (Advances in Engineering Series)
by Hans Troger A.P. Alpatov V.V. Beletsky V.I. Dranovskii V.S. Khoroshilov A.V. Pirozhenko A.E. ZakrzhevskiiDuring many of the earliest American and Russian space missions, experiments were performed using cables to connect people and objects to spacecraft in orbit. These attempts generated considerable information about the formation of tethered systems and basic problems with tether orientation and gravity-gradient stabilization. During the 1970s, inte
Dynamics of the Axially Moving Orthotropic Web
by Krzysztof MarynowskiA material continuum moving axially at high speed can be met in numerous different technical applications. These comprise band saws, web papers during manufacturing, processing and printing processes, textile bands during manufacturing and processing, pipes transporting fluids, transmission belts as well as flat objects moving at high speeds in space. In all these so varied technical applications, the maximum transport speed or the transportation speed is aimed at in order to increase efficiency and optimize investment and performance costs of sometimes very expensive and complex machines and installations. The dynamic behavior of axially moving systems very often hinders from reaching these aims. The book is devoted to dynamics of axially moving material objects of low flexural stiffness that are referred to as webs. Webs are moving at high speed, for example, in paper production the paper webs are transported with longitudinal speeds of up to 3000 m/min. Above the critical speed one can expect various dynamical instabilities mainly of divergent and flutter type. The up-to-date state of investigations conducted in the field of the axially moving system dynamics is presented in the beginning of the book. Special attention is paid on nonlinear dynamic investigations of translating systems. In the next chapters various mathematical models that can be employed in dynamic investigations of such objects and the results of analysis of the dynamic behavior of the axially moving orthotropic material web are presented. To make tracing the dynamic considerations easier, a paper web is the main object of investigations in the book.
Dynamics of the Rigid Solid with General Constraints by a Multibody Approach
by Nicolae-Doru Stanescu Nicolae PandreaCovers both holonomic and non-holonomic constraints in a study of the mechanics of the constrained rigid body. Covers all types of general constraints applicable to the solid rigid Performs calculations in matrix form Provides algorithms for the numerical calculations for each type of constraint Includes solved numerical examples Accompanied by a website hosting programs
Dynamics of the Unicycle: Modelling And Experimental Verification (SpringerBriefs in Applied Sciences and Technology)
by Tomasz Kapitaniak Barnat Wiesław Michał NiełacznyThis book presents a three-dimensional model of the complete unicycle–unicyclist system. A unicycle with a unicyclist on it represents a very complex system. It combines Mechanics, Biomechanics and Control Theory into the system, and is impressive in both its simplicity and improbability. Even more amazing is the fact that most unicyclists don’t know that what they’re doing is, according to science, impossible – just like bumblebees theoretically shouldn’t be able to fly. This book is devoted to the problem of modeling and controlling a 3D dynamical system consisting of a single-wheeled vehicle, namely a unicycle and the cyclist (unicyclist) riding it. The equations of motion are derived with the aid of the rarely used Boltzmann–Hamel Equations in Matrix Form, which are based on quasi-velocities. The Matrix Form allows Hamel coefficients to be automatically generated, and eliminates all the difficulties associated with determining these quantities. The equations of motion are solved by means of Wolfram Mathematica. To more faithfully represent the unicyclist as part of the model, the model is extended according to the main principles of biomechanics. The impact of the pneumatic tire is investigated using the Pacejka Magic Formula model including experimental determination of the stiffness coefficient. The aim of control is to maintain the unicycle–unicyclist system in an unstable equilibrium around a given angular position. The control system, based on LQ Regulator, is applied in Wolfram Mathematica. Lastly, experimental validation, 3D motion capture using software OptiTrack – Motive:Body and high-speed cameras are employed to test the model’s legitimacy. The description of the unicycle–unicyclist system dynamical model, simulation results, and experimental validation are all presented in detail.
Dynamics of Transportation Ecosystem, Modeling, and Control (Energy, Environment, and Sustainability)
by Vikram Kumar Ram Krishna Upadhyay Sunil Kumar SharmaTransportation is the lifeblood of modern society, connecting people, goods, and information across the world. However, as our cities grow and the demand for transportation increases, it becomes imperative to understand and manage the intricate dynamics of the transportation ecosystem. This book provides an in-depth exploration of the complex dynamics of transportation systems, with a focus on modeling and control strategies that can enhance efficiency, sustainability, and resilience. It is an indispensable resource for transportation engineers, researchers, students, and professionals seeking a comprehensive understanding of the complex dynamics at play in transportation systems. By delving into advanced modeling techniques, control strategies, and sustainability considerations, this book equips readers with the knowledge needed to navigate and optimize the evolving transportation landscape. This book offers a comprehensive examination of the interconnected elements within the transportation ecosystem, including vehicles, infrastructure, traffic flow, and emerging technologies. It explores advanced modeling and simulation techniques for understanding and predicting transportation system behavior, discussing control strategies that can be applied to optimize transportation systems, enhancing safety, and mitigating congestion, addressing the challenges of sustainability and resilience in transportation, including the integration of eco-friendly technologies and disaster response.
Dynamics of Tree-Type Robotic Systems
by Jayanta Kumar Dutt Subir Kumar Saha Suril Vijaykumar ShahThis book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.
Dynamics of Underactuated Multibody Systems
by Robert SeifriedUnderactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
Dynamics of Vehicle-Road Coupled System
by Shaopu Yang Liqun Chen Shaohua LiVehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai University, Shanghai, China; Shaohua Li is a professor at Shijiazhuang Tiedao University, China.
The Dynamics of Vehicles on Roads
by A.H. WickensFirst published in 1982. CRC Press is an imprint of Taylor & Francis.
The Dynamics of Vehicles on Roads and on Tracks: Proceedings of 10th IAVSD Symposium Held in Prague, Czechoslovakia, August 24-28, 1987
by Milan ApetaurThis book deals with identification methods for vehicle system dynamics and dynamic interaction of vehicles with tracks and roads. It also deals with injury sequence and injury severity as the consequence of the dynamic response of the vehicle during and after collision.
The Dynamics of Vehicles on Roads and on Tracks
by Robert FröhlingThese proceedings provide an authoritative source of information in the field of suspension design, vehicle-infrastructure interaction, mechatronics and vehicle control systems for road as well as rail vehicles. The research presented includes modelling and simulation.
The Dynamics of Vehicles on Roads and on Tracks: Proceedings of the 13th IAVSD Symposium
by Zhiyun ShenThis book develops a continuous look-ahead preview control scheme and applies the scheme to the well known quarter car model. It particularly focuses on the active and semi-active control of the vehicle systems.
The Dynamics of Vehicles on Roads and on Tracks: Proceedings of the Iavsd Symposium, 6th Technical University, Berlin, Sept. 1979
by WillumeitFirst published in 1980. CRC Press is an imprint of Taylor & Francis.
The Dynamics of Vehicles on Roads and Tracks: Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD 2015), Graz, Austria, 17-21 August 2015
by Johannes Edelmann Manfred Plöchl Martin Rosenberger Klaus SixThe IAVSD Symposium is the leading international conference in the field of ground vehicle dynamics, bringing together scientists and engineers from academia and industry. The biennial IAVSD symposia have been held in internationally renowned locations. In 2015 the 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD)
Dynamics of Vehicles on Roads and Tracks Vol 1: Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), 14-18 August 2017, Rockhampton, Queensland, Australia
by Maksym Spiryagin Timothy Gordon Colin Cole Tim McSweeneyThe International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field. Volume 1 contains 78 papers under the subject heading Road.
Dynamics of Vehicles on Roads and Tracks Vol 2: Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), 14-18 August 2017, Rockhampton, Queensland, Australia
by Maksym Spiryagin Timothy Gordon Colin Cole Tim McSweeneyThe International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field. Volume 2 contains 135 papers under the subject heading Rail.
Dynamics of Water Surface Flows and Waves
by Yasunori WatanabeDynamics of Water Surface Flows and Waves provides theoretical descriptions of the whole life of water surface waves through their birth, propagation, evolution and finally breaking. While initial capillary waves are created via instability at air-water interfaces, potential wave theories adequately describe interactions of waves with current, bathymetry and structure. In the final breaking stage, potential fluid motions in the waves rapidly evolve into vortical turbulent flows that disturb the surfaces, resulting in entrainment of air-bubbles and ejection of sea spray in bursting bubbles floating on the surface. All theories and analytical methods required to understand the series of wave processes, over diverse areas of subjects, including turbulence, diffusion, vortex and capillary dynamics, shallow water approach, and stability analysis, as well as the conventional potential wave theory, are comprehensively covered in this book. All of the mathematical formulas are consistently developed from theorems and linked with physics, which provides theoretical understanding and further interest in wave dynamics. This is an ideal graduate-level textbook or reference for engineers and researchers in the fields of fluid and wave mechanics, coastal and ocean engineering.