- Table View
- List View
Electrochemical Processes in Biological Systems
by Andrzej Lewenstam Lo Gorton Andrzej WieckowskiThe first book to provdie a comprehensive look at bioenergetics, the energy flow in living systems, by studying ion exchange and electron transfer processes in biological membranes and artificial bio-films, and how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells. The book: Discusses the ion fluxes and electron transfer processes in biological membranes and artificial bio-films Provides an in-depth description of the processes at the interface between the membrane/film and substrate electrode Is the first of its kind to provide a comprehensive look at how these processes are understood in biology of living cells Addresses how these processes contribute to developing modern biosensor and ion-sensor technology, as well as biofuel cells
Electrochemical Production of Metal Powders
by Stojan S. DjokićThis new volume of Modern Aspects of Electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries.
Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies (Electrochemical Energy Storage And Conversion Ser. #11)
by Jinli Qiao Yuyu Liu Jiujun ZhangFor Researchers, Students, Industrial Professionals, and ManufacturersElectrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies is your guide to improved catalytic performance in the electrochemical reduction of carbon dioxide (CO2). Written by electrochemical energy scientists actively involved in environmental research and develo
Electrochemical Sensors in Bioanalysis
by Raluca-Ioana Stefan"Covers the most recent methods and materials for the construction, validation, analysis, and design of electrochemical sensors for bioanalytical, clinical, and pharmaceutical applications--emphasizing the latest classes of enantioselective electrochemical sensors as well as electrochemical sensors for in vivo and in vitro diagnosis, for DNA assay
Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (Electrochemical Energy Storage and Conversion #1)
by Jiujun Zhang Aiping Yu Victor ChabotAlthough recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.
Electrochemical Techniques in Corrosion Science and Engineering (Corrosion Technology Ser. #Vol. 18)
by Rudolph G. Buchheit Robert G. Kelly John R. Scully David ShoesmithThis book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficac
Electrochemical Technologies for Energy Storage and Conversion
by Jiujun Zhang Lei Zhang Hansan Liu Xueliang Sun Ru-Shi LiuIn this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.
Electrochemical Transformation of Renewable Compounds
by Zhiqun Lin Xueqin Liu Zhen Li Yanqiu HuangElectrochemical conversion process can be used to generate power, store energy and synthesize chemicals, which plays a key role in the development of sustainable energy resources. Electrochemical Transformation of Renewable Compounds presents the basic fundamentals of different electrochemical transformations for clean energy and places significant emphasis on the key developments of various electrochemical processes using state-of-the-art materials. Written by electrochemical energy scientists who have worked on the application of electrocatalysis in the environmental and energy area, this book provides comprehensive coverage of main electrochemical transformation processes, including oxygen evolution, hydrogen generation, oxygen reduction, carbon dioxide reduction, nitrogen reduction, methanol oxidation, urea oxidation and ammonia oxidation.
Electrochemical Water Electrolysis: Fundamentals and Technologies (Electrochemical Energy Storage and Conversion)
by Lei Zhang Jiujun Zhang Xueliang Sun David P. Wilkinson Hongbin ZhaoThis book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.
Electrochemical Water Processing: A Compendium Of Analyses And Laboratory Notes Based Upon R&d In Electrochemical Energy Systems Technology
by Ralph ZitoEven though most of the Earth’s surface is covered with water, most of it is not directly usable for human consumption or applications. As the population increases and our general style of living standards increase, the importance useable water is becoming acute. This book addresses this issue with approaches to treating water sources that require removal of unwanted or dissolved substances. In particular, it covers various methods for removing dissolved ionic materials. There are numerous methods for accomplishing this end, and the book reviews most of them in some depth.
Electrochemical Water Splitting: Fundamentals, Challenges and Advances (Materials Horizons: From Nature to Nanomaterials)
by Yousef Haik Tanveer ul HaqThis book provides a comprehensive platform for the research, scientific and educational communities working on electrocatalysis. It covers water electrolysis from different fields of catalysis research, deals with the fundamentals and critically discusses the precise and correct use of evaluating parameters and their calculation for a fair evaluation. Readers find an analysis to probe the origin of different bottlenecks in water electrolysis and scientific methods to enhance the electrode selectivity with high intrinsic activity, effective mass and electron transfer ability, abundant active sites with super hydrophilicity-aerophobicity characteristics and structural, mechanical and chemical stability with high corrosion resistance.
Electrochemically Assisted Remediation of Contaminated Soils: Fundamentals, Technologies, Combined Processes and Pre-Pilot and Scale-Up Applications (Environmental Pollution #30)
by M. A. Rodrigo E. V. Dos SantosThis book provides an overview of the current development status of remediation technologies involving electrochemical processes, which are used to clean up soils that are contaminated with different types of contaminants (organics, inorganics, metalloids and radioactive). Written by internationally recognized experts, it comprises 21 chapters describing the characteristics and theoretical foundations of various electrochemical applications of soil remediation. The book’s opening section discusses the fundamental properties and characteristics of the soil, which are essential to understand the processes that can most effectively remove organic and inorganic compounds. This part also focuses on the primary processes that contribute to the application of electrochemically assisted remediation, hydrodynamic aspects and kinetics of contaminants in the soil. It also reviews the techniques that have been developed for the treatment of contaminated soils using electrochemistry, and discusses different strategies used to enhance performance, the type of electrode and electrolyte, and the most important operating conditions. In turn, the book’s second part deals with practical applications of technologies related to the separation of pollutants from soil. Special emphasis is given to the characteristics of these technologies regarding transport of the contaminants and soil toxicity after treatment. The third part is dedicated to new technologies, including electrokinetic remediation and hybrid approaches, for the treatment of emerging contaminants by ex-situ and in-situ production of strong oxidant species used for soil remediation. It also discusses pre-pilot scale for soil treatment and the use of solar photovoltaic panels as an energy source for powering electrochemical systems, which can reduce both the investment and maintenance costs of electrochemically assisted processes.
Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion
by Kwong-Yu Chan Chi-Ying Vanessa LiWith contributions from leading researchers in their fields, this book provides an overview of the most important electrochemical power sources in development today. Focusing on materials, design, and performance, the text presents the most recent and innovative technologies employed in battery and fuel cell technologies. Topics include acid-alkaline batteries, microbial fuel cells, lithium batteries, lead acid batteries, ultracapacitors, vanadium flow batteries, and carbon dioxide electroreduction. The book discusses the advantages of these cells over conventional methodologies, and their future applications.
Electrochemically Engineered Nanoporous Materials
by Dusan Losic Abel SantosThis book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.
Electrochemistry at the Nanoscale
by Patrik Schmuki Sannakaisa VirtanenFor centuries, electrochemistry has played a key role in technologically important areas such as electroplating or corrosion. In recent decades, electrochemical methods are receiving increasing attention in important strongly growing fields of science and technology such as nanosciences (nanoelectrochemistry) and life-sciences (organic and biological electrochemistry). Characterization, modification and understanding of various electrochemical interfaces or electrochemical processes at the nanoscale, has led to a huge increase of the scientific interest in electrochemical mechanisms as well as of application of electrochemical methods in novel technologies. This book presents exciting emerging scientific and technological aspects of the introduction of the nanodimension in electrochemical approaches are presented in 12 chapters/subchapters.
Electrochemistry Crash Course for Engineers
by Slobodan PetrovicThis book is a concise introductory guide to understanding the foundations of electrochemistry. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the author explains in simple language an otherwise complex subject that can be difficult to master for most. It provides readers with an understanding of important electrochemical processes and practical industrial applications, such as electrolysis processes, metal electrowinning, corrosion and analytical applications, and galvanic cells such as batteries, fuel cells, and supercapacitors. This powerful tutorial is a great resource for students, engineers, technicians, and other busy professionals who need to quickly acquire a solid understanding of the science of electrochemistry.
Electrochemistry for the Environment
by Christos Comninellis Guohua ChenThe book starts with the fundamentals of environmental electrochemistry, introducing the basic techniques in selecting and fabricating electrode materials, followed by a theoretical analysis of the electrochemical processes, green electrochemical operation, discussion of electrochemical technologies in water treatment, and then examination of the established wastewater treatment technologies such as electrochemical reactors for metal recovery, electrocoagulation, electroflotation and electrooxidation. Emerging technologies such as electrophotooxidation, electro disinfection, and electrochemical technologies in sludge and soil treatment will also be analyzed. This book will be an excellent reference for young researchers starting new research programs and also for industrialists who wish to appreciate the technologies.
Electrochemistry of Immobilized Particles and Droplets
by Fritz Scholz Uwe Schröder Rubin Gulaboski Antonio Doménech-CarbóThis second edition of a successful and highly-accessed monograph has been extended by more than 100 pages. It includes an enlarged coverage of applications for materials characterization and analysis. Also a more detailed description of strategies for determining free energies of ion transfer between miscible liquids is provided. This is now possible with a "third-phase strategy" which the authors explain from theoretical and practical points of view. The book is still the only one detailing strategies for solid state electroanalysis. It also features the specific potential of the techniques to use immobilized particles (for studies of solid materials) and of immobilized droplets of immiscible liquids for the purpose of studying the three-phase electrochemistry of these liquids. This also includes studies of ion transfer between aqueous and immiscible non-aqueous liquids. The bibliography of all published papers in this field of research has been expanded from 318 to now 444 references in this second edition. Not only are pertinent references provided at the end of each chapter, but the complete list of the cited literature is also offered as a separate chapter for easy reference.
Electrochemistry of Insertion Materials for Hydrogen and Lithium
by Joo-Young Go Su-Il Pyun Jong-Won Lee Heon-Cheol ShinThe understanding of hydrogen/lithium insertion phenomena is of great importance for the development of the next generation of functional electrochemical devices such as rechargeable batteries, electrochromic devices, and fuel cells. This volume introduces a variety of viable electrochemical methods to identify reaction mechanisms and evaluate relevant kinetic properties of insertion electrodes. The authors also outline various ways to analyze anomalous behaviour of hydrogen/lithium transport through insertion electrodes.
Electrochemistry of Metal Chalcogenides
by Mirtat BouroushianThe author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.
Electrochemistry of Porous Materials
by Antonio Doménech CarbóElectrochemistry of Porous Materials describes essential theoretical aspects of the electrochemistry of nanostructured materials and primary applications, incorporating the advances in the field in the last ten years including recent theoretical formulations and the incorporation of novel materials. Concentrating on nanostructured micro- and mesoporous materials, the highly anticipated Second Edition offers a more focused and practical analysis of key porous materials considered relatively homogeneous from an electrochemical point of view. The author details the use of electrochemical methods in materials science for characterization and their applications in the fields of analysis, energy production and storage, environmental remediation, and the biomedical arena. Additional features include: Incorporates new theoretical advances in the voltammetry of porous materials and multiphase porous electrochemistry. Includes new developments in sensing, energy production and storage, degradation of pollutants, desalination and drug release. Describes redox processes for different porous materials, assessing their electrochemical applications. Written at an accessible and understandable level for researchers and graduate students working in the field of material chemistry. Selective and streamlined, Electrochemistry of Porous Materials, Second Edition culls a wide range of relevant and practically useful material from the extensive literature on the subject, making it an invaluable reference for readers of all levels of understanding.
Electrochemistry of Zirconia Gas Sensors
by Serge ZhuiykovThe first book to present a detailed analysis of the electrochemistry, development, modeling, optimization, testing, and technology behind modern zirconia-based sensors, Electrochemistry of Zirconia Gas Sensors explores how to tailor these sensors to meet specific industrial needs. The book addresses a range of different stages of development in zi
Electrochromic Materials and Devices
by Roger J. Mortimer David R. Rosseinsky Paul M. S. MonkElectrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.
Electrode Materials in Energy Storage Technologies: Applications in Lithium-, Sodium-, Potassium-, Sulfur- and Zinc-Based Rechargeable Batteries
by Liqiang XuDiscover the necessary materials for building better and cheaper batteries for a sustainable future The search for renewable energy sources is one of the most vital steps towards a sustainable future. The rapid development of new energy technology has placed considerable pressure on the production of rechargeable batteries in recent years. Electrode materials, which provide the “heart” of the rechargeable battery, are therefore necessarily the focus of any efforts to produce cheaper, more and more sustainable battery-powered systems. Electrode Materials in Energy Storage Technologies provides a comprehensive overview of all key electrode materials for rechargeable batteries. Beginning with an introduction to rechargeable battery technology, it moves to analysis of specific systems. Complete with an in-depth understanding of essential electrochemical mechanisms, it’s an indispensable guide to a core aspect of the ongoing energy revolution. Electrode Materials in Energy Storage Technologies readers will also find: A focus on design, structure-property relationships, and applications of electrode materials Detailed discussion of materials including lithium, sodium, potassium, zinc, and more Numerous practical applications with an emphasis on safety, sustainability, and market trends Electrode Materials in Energy Storage Technologies is ideal for material scientists and chemists of all kinds.
Electrodeposition
by Stojan S. DjokicIn the past few decades, research in the science of electrodeposition of metals has shown the important practical applications of electronic, magnetic, energy devices and biomedical materials. The aim of this new volume is to review the latest developments electrodeposition and present them to teachers, professionals, and students working in the field.