Browse Results

Showing 22,126 through 22,150 of 74,039 results

Energy Efficient Buildings with Solar and Geothermal Resources

by Ursula Eicker

A modern and unique perspective on solar and geothermal technologies for heating and cooling buildingsThis book will have a broad appeal reaching practising engineers in the industry as well as students. With introductory sections for each technology described, material includes chapters on: geothermal energy use for the heating and cooling of buildings; a chapter on electrically driven heat pumps/chillers; material on night radiative cooling, photovoltaic thermal collectors, temperature modelling and thin film photovoltaic modelling. Includes general introductory sections for each technology with market potential and applicationsCovers an increasingly important component of energy coursesConsiders a broad range of alternative renewable energy supplies relevant to the building sector, such as geothermal energy with heat pumpWith a special focus on solar cooling, provides detailed physical models of all technologies and example calculationsUnique in covering the fundamentals of meteorological modelling

Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems

by Zhiqiang John Zhai

Energy Efficient Buildings A complete and authoritative discussion of the fundamentals of designing and engineering energy efficient buildings In Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems, distinguished engineer and architect Dr. John Zhai delivers a comprehensive exploration of the design and engineering fundamentals of energy efficient buildings. The book introduces the fundamental knowledge, calculations, analyses, and principles used by designers of energy efficient buildings and addresses all essential elements of the discipline. An essential guide for students studying civil, architectural, mechanical, and electrical engineering with a focus on energy, building systems, and building science, the book provides practical in-class materials, examples, and actual design practices, as well as end-of-chapter questions (with solutions) and sample group projects. Readers will find: A thorough introduction to the cross-disciplinary approach to the design of energy efficient buildings Comprehensive explorations of all critical elements of energy efficient building design, including standards and codes, psychometrics, microclimate, thermal comfort, indoor air quality, HVAC systems, and more In-depth discussions of the foundational knowledge, calculations, analysis, and principles needed to design energy efficient buildings Practical in-class examples and end-of-chapter questions with solutions for students, and design guidance and sample group projects for use in course lectures and actual design practices. Perfect for graduate and advanced undergraduate students studying building environmental systems, building systems in construction, and mechanical and electrical systems in construction, Energy Efficient Buildings: Fundamentals of Building Science and Thermal Systems will also earn a place in the libraries of practicing civil, architectural, and mechanical engineers.

Energy Efficient Computation Offloading in Mobile Edge Computing (Wireless Networks)

by Ying Chen Ning Zhang Yuan Wu Sherman Shen

This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices’ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.

Energy Efficient Computing & Electronics: Devices to Systems (Devices, Circuits, and Systems)

by Krzysztof Iniewski, Santosh K. Kurinec and Sumeet Walia

In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing. Features • Has a comprehensive coverage of various technologies • Written by international experts in their corresponding field • Covers revolutionary concepts at the device, circuit, and system levels

Energy Efficient Cooperative Wireless Communication and Networks

by Zhengguo Sheng Chi Harold Liu

Compared with conventional communications, cooperative communication allows multiple users in a wireless network to coordinate their packet transmissions and share each other's resources, thus achieving high-performance gain and better service coverage and reliability. Energy Efficient Cooperative Wireless Communication and Networks provides a comp

Energy Efficient Full Duplex Wireless Communication Systems (Wireless Networks)

by Xu Zhu Jingjing Wang Zhongxiang Wei Sumei Sun

In an effort to overcome the spectral efficiency loss and high latency by half-duplex (HD), full-duplex (FD) has attracted extensive attention in industry and academia. With signal transmitted and received simultaneously over the same frequency, FD can approximately double the SE over HD. More than that, by enabling the capability of simultaneous transmission-and-reception for communication nodes, full duplex (FD) is a key enabler for many 5G techniques, including but not limited to integrated sensing and communication, low-latency relaying, concurrent bi-directional uplink and downlink transmission, ect. Nevertheless, in FD communications, both transmit and receive radio frequency (RF) chains are activated for exchanging data, and additional power is triggered by self-interference cancellation. As FD requires much higher power consumption than that of half duplex (HD), it is against the green evolution requirement proposed by the future communication systems. To address the critical high-power challenge in applying FD communications, this book will introduce the fundamentals and algorithm designs for energy-efficient FD design. This book will first discuss the principle of energy-efficient communications, which aims to make a good balance between communication performance and system energy consumption. Then, this book will discuss different self-interference cancellation schemes, including passive suppression, analogue cancellation and digital cancellation for FD communications, from the prospective of energy efficiency. Subsequently, this book will present some edge-cutting energy efficiency-oriented FD solutions, including adaptive transmission power adaptation, wireless power transfer FD relaying, bi-directional FD distributed antenna systems, from the perspective of algorithm design and performance analysis.

Energy Efficient Hardware-Software Co-Synthesis Using Reconfigurable Hardware (Chapman & Hall/CRC Computer and Information Science Series)

by Viktor K. Prasanna Jingzhao Ou

Rapid energy estimation for energy efficient applications using field-programmable gate arrays (FPGAs) remains a challenging research topic. Energy dissipation and efficiency have prevented the widespread use of FPGA devices in embedded systems. Helping overcome these challenges, this book offers solutions for the development of energy efficient applications using FPGAs. It provides a framework for high-level hardware-software application development, describes energy performance modeling for reconfigurable system-on-chip devices, and explores energy efficient designs for various applications. The authors present a two-step rapid energy estimation technique that enables high-level design space exploration and offer a hardware-software design for energy efficient implementations of operating systems.

Energy Efficient High Performance Processors: Recent Approaches For Designing Green High Performance Computing (Computer Architecture and Design Methodologies)

by Anupam Chattopadhyay Jawad Haj-Yahya Avi Mendelson Yosi Ben Asher

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

Energy Efficient Manufacturing: Theory and Applications

by David A. Dornfeld John W. Sutherland Barbara S. Linke

Over the last several years, manufacturers have expressed increasing interest in reducing their energy consumption and have begun to search for opportunities to reduce their energy usage. In this book, the authors explore a variety of opportunities to reduce the energy footprint of manufacturing. These opportunities cover the entire spatial scale of the manufacturing enterprise: from unit process-oriented approaches to enterprise-level strategies. Each chapter examines some aspect of this spatial scale, and discusses and describes the opportunities that exist at that level. Case studies demonstrate how the opportunity may be acted on with practical guidance on how to respond to these opportunities.

Energy Efficient Microwave Systems

by Lambert E. Feher

Many individual technological solutions for microwave applications in industries have been developed without a clear pattern for a key strategy to replace conventional industrial technologies. In this work, the author shows how a modular microwave system line for very homogenous microwave fields is originated. "Energy Efficient Microwave Technologies" is designed for engineers and scientists from industry and academic research. The number of applications of this new technology is enormous: In this book, applications in the avionic field are shown as well as new methods in microwave materials processing for composite materials including new quantum aspects on microwave heating.

Energy Efficient Non-Road Hybrid Electric Vehicles

by Johannes Unger Marcus Quasthoff Stefan Jakubek

This book analyzes the main problems in the real-timecontrol of parallel hybrid electric powertrains in non-road applications thatwork in continuous high dynamic operation. It also provides practical insightsinto maximizing the energy efficiency and drivability of such powertrains. It introduces anenergy-management control structure, which considers all the physicalpowertrain constraints and uses novel methodologies to predict the future loadrequirements to optimize the controller output in terms of the entire workcycle of a non-road vehicle. The load prediction includes a methodology forshort-term loads as well as cycle detection methodology for an entire loadcycle. In this way, the energy efficiency can be maximized, and fuelconsumption and exhaust emissions simultaneously reduced. Readers gain deepinsights into the topics that need to be considered in designing an energy andbattery management system for non-road vehicles. It also becomes clear thatonly a combination of management systems can significantly increase theperformance of a controller.

Energy Efficient Spectrum Resources Usage in WPANs: IEEE 82.15.4 MAC Sub-layer Protocols (River Publishers Series in Communications and Networking)

by Periklis Chatzimisios Luís Miguel Borges Norberto Barroca Fernando José Velez

Wireless Sensor Networks (WSNs) and the Internet of Things are facing tremendous advances both in terms of energy-efficiency as well as in the number of available applications. Consequently, there are challenges that need to be tackled for the future generation of WSNs. After giving an overview of the WSN protocols and IEEE 802.15.4 standard, this book proposes IEEE 802.15.4 Medium Access Control (MAC) sub-layer performance enhancements by employing not only RTS/CTS combined with packet concatenation but also scheduled channel poling (MC-SCP). Results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. Furthermore, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol enables more efficiency as it allows the aggregation of several acknowledgement responses in one special Block Acknowledgment (BACK) Response packet. The throughput and delay performance have been mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non-ideal conditions (with transmission errors). Simulation results successfully validate the proposed analytical models. This research reveals the importance of an appropriate design for the MAC sub-layer protocol for the desired WSN application. Depending on the mission of the WSN application, different protocols are required. Therefore, the overall performance of a WSN application certainly depends on the development and application of suitable e.g., MAC, network layer protocols.

Energy Efficient Thermal Management of Data Centers

by Pramod Kumar Yogendra Joshi

Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed.

Energy Efficient Vehicles: Technologies and Challenges (Advances in Manufacturing, Design and Computational Intelligence Techniques)

by Ashwani Kumar Gaurav Dwivedi Chandan Swaroop Meena Varun Pratap Singh

The text discusses energy-efficient vehicles as an essential element of sustainable transportation. The text highlights the social, economic, and environmental benefits associated with energy-efficient automobiles, which effectively solve the issue of greenhouse gas emissions, improve air quality, boost energy security, and promote zero-emission. The energy-efficient technologies for transportation, accessibility and safety of the transport system, environmental footprint, health impact, economic development, and social growth are the central theme of the book. It further presents future integrated mobility-energy systems and sustainability indicators.This book: Examines policies, challenges, and the latest developments in the field of sustainable mobility. Discusses the latest advances in the field of energy storage systems, batteries, image processing, obstacle identification, and automatic gear trains. Highlights the safety, security, and risk management related to sustainable transportation, covering zero emissions and sustainability indicators. Presents electric vehicle grid integration and infrastructure for e-vehicle charging. Aims to provide an overview of various aspects of EV, HEV, ITS, and vehicular network deployment design, encompassing the technological advancements, challenges, and opportunities associated with this rapidly evolving field. Understanding the transportation needs and preferences of youth populations in shaping transportation policy and promoting sustainable urban development to design transportation systems that are efficient, equitable, and environmentally sustainable. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modeling present in the energy sector. This book is primarily written for senior undergraduate, graduate students, and academic researchers in fields including mechanical engineering, industrial engineering, automotive engineering, manufacturing engineering, and environmental engineering.

Energy Efficient and Reliable Embedded Nanoscale SRAM Design

by Santosh Kumar Vishvakarma Ambika Prasad Shah Bhupendra Singh Reniwal Pooran Singh

This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.

Energy Engineering

by Purnendu Ghosh K. V. Raghavan

This book contains the proceedings of CAETS 2015 Convocation on 'Pathways to Sustainability: Energy, Mobility and Healthcare Engineering' that was held on October 13-14, 2015 in New Delhi. This 3 volume proceedings provide an international forum for discussion and communication of engineering and technological issues of common concern. This volume talks about 'Energy' and includes 22 chapters on diverse topics like renewable energy, advances and applications of bio-energy and bio-refinery, energy options and scenarios, wind energy for buildings and transportation, etc. The contents of this volume will be useful to researchers, professionals, and policy makers alike.

Energy Fables: Challenging Ideas in the Energy Sector

by Jacopo Torriti Elizabeth Shove Jenny Rinkinen

Energy Fables: Challenging Ideas in the Energy Sector takes a fresh look at key terms and concepts around which energy research and policy are organised. Drawing on recent research in energy and transport studies, and combining this with concepts from sociology, economics, social theory and technology studies, the chapters in this collection review and challenge different aspects of received wisdom. Brief but critical introductions to classic notions like those of ‘energy efficiency’, ‘elasticity’, ‘energy services’ and the ‘energy trilemma’, together with discussions and analyses of well-worn phrases about ‘low hanging fruit’ and ‘keeping the lights on’, articulate aspects of the energy debate that are often taken for granted. In re-working these established themes and adding twists to familiar tales, the authors develop a repertoire of new ideas about the fundamentals of energy demand and carbon reduction. This book presents a valuable and thought-provoking resource for students, researchers and policy-makers interested in energy demand, politics and policy.

Energy Flows, Material Cycles and Global Development

by Georg Schaub Thomas Turek

This book starts by discussing the global flows of energy and materials and changes caused by human activities. It then examines the limitations of anthropogenic energy and material flows and the consequences for the development of human society. Different scenarios for lifestyle patterns are correlated with the future development of the global energy supply and climate. As it provides a process engineering approach to the Earth system and global development, readers should have a basic understanding of mathematics, physics, chemistry and biology. This second edition also reflects new developments since the original publication: increases in anthropogenic energy and material flows due to significant economic growth in certain parts of the world, and recent changes in energy policy and technological development countries, such as Germany (the Energiewende, or transition to renewable energy sources), where goals have been defined and measures initiated for a future energy supply without fossil and nuclear sources. As such, it offers a valuable resource for undergraduate and graduate students as well as practicing experts alike.

Energy Footprints of the Bio-refinery, Hotel, and Building Sectors (Environmental Footprints And Eco-design Of Products And Processes)

by Subramanian Senthilkannan Muthu

This book deals with the energy footprints of biorefineries and the hotel and buildings sector. It presents footprint case studies, which include background information, methodological frameworks, assessment checklists, calculation tools and techniques, applications, challenges and limitations. It also discusses the application of each indicator/framework in various industrial sectors and the associated challenges, along with outlooks for the future. Consumption and conservation of energy are key elements in any industry’s sustainability strategy. ​

Energy Futures: The Story of Fossil Fuel, Greenhouse Gas, and Climate Change

by Daniel J. Soeder

The second edition of this book updates some of the progress in clean energy and climate tech that has been made since the initial publication in 2022 and adds new material that was not available earlier, including information on energy from hydrogen, recent developments in geothermal technology, and progress on carbon dioxide removal. It also discusses changes in international climate policies, including a greater focus on loss and damage in the Global South and some restructuring of carbon offset economics in both North America and Europe. The objective of this book is to help the average, concerned reader better understand the links between fossil fuel, greenhouse gas, and climate change in a clear, explanatory format. It avoids sensationalism and politics, using plain language to explain the details of the science, how the science works, and how we know what we know. The book is referenced throughout with footnotes. It describes the history of fossil fuels, why fossil fuel combustion products are a problem, and what must be done to address the impacts on climate. Details include a number of energy engineering solutions to replace fossil fuels with renewable, clean energy, and information about a technology called geoengineering that can cool the planet and directly remove greenhouse gases from the atmosphere. Many people are pessimistic about the future and prepared to give up on addressing climate change. This book strives to maintain hope that humanity can and must solve this and other environmental problems. The climate crisis was caused by humans, and it can be addressed with human engineering. Responsible discussions by informed readers with their political leaders are a pathway for implementing solutions to climate change.

Energy Futures: The Story of Fossil Fuel, Greenhouse Gas, and Climate Change

by Daniel Soeder

The objective of this book is to help readers better understand the links between fossil fuel, greenhouse gas, and climate change in a clear, explanatory format. It avoids sensationalism and politics, using plain language to explain the details of the science, how the science works, and how we know what we know. It describes the history of fossil fuels, why fossil fuel combustion products are a problem, and what must be done to address the impacts on climate. It provides details about a number of energy engineering solutions to replace fossil fuels and technology called geoengineering that can cool the planet and directly remove greenhouse gases from the atmosphere. Some of these technologies can be implemented almost immediately, and others may be applied in the future. Many young people are pessimistic about the future and prepared to give up on addressing climate change. The book strives to maintain hope throughout that humanity can solve this and other environmental problems. The climate crisis was caused by human engineering, and human engineering can fix it. The goal is to produce informed readers that can have responsible discussions with their political leaders about implementing solutions to climate change.

Energy Geostructures: Innovation in Underground Engineering

by Lyesse Laloui Alice Di Donna

Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures. The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study. Contents Part 1. Physical Modeling of Energy Piles at Different Scales 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui. 2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui. 3. Observed Response of Energy Geostructures, Peter Bourne-Webb. 4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari. 5. Centrifuge Modeling of Energy Foundations, John S. McCartney. Part 2. Numerical Modeling of Energy Geostructures 6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui. 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sébastien Burlon and Julien Habert. 8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart. 9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud. 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon. 11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers. Part 3. Engineering Practice 12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis, Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin. 13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui. 14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud. About the Authors Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.

Energy Geotechnics: Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT 2016, Kiel, Germany, 29-31 August 2016

by Frank Wuttke, Sebastian Bauer and Marcelo Sánchez

Energy Geotechnics includes 97 technical papers presented at the 1st International Conference on Energy Geotechnics (ICEGT 2016, Kiel, Germany, 29-31 August 2016). The contributions provides significant advances and critical challenges facing the areas of fundamentals, constitutive and numerical modelling, testing techniques and energy geotechnics applications. Energy Geotechnics contains seven regular sessions and six minisymposia, with contributions on discrete and continuum based modelling as well as investigations based on experimental studies at various scales. The papers on discrete and continuum based modelling examine the behaviour of gas hydrate sediments, cyclic and Themo-Hydro-Mechanical (T-H-M) modelling of energy piles, non-linear behaviour of energy geo-storage and geo-structures, deformation of geomaterials, modelling of borehole heat exchangers and energy walls, analysis of hydraulic fracturing and discontinuities in reservoirs, engineering problems involving gas hydrates sediments, and modelling of environmental impact of energy geotechnical processes.

Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation

by Yen Kheng Tan

Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation provides a wide range of coverage of various energy harvesting techniques to enable the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). It supplies a practical overview of the entire EH-WSN system from energy source all the way to energy usage by wireless sensor nodes/network. After an in-depth review of existing energy harvesting research thus far, the book focuses on: Outlines two wind energy harvesting (WEH) approaches, one using a wind turbine generator and one a piezoelectric wind energy harvester Covers thermal energy harvesting (TEH) from ambient heat sources with low temperature differences Presents two types of piezoelectric-based vibration energy harvesting systems to harvest impact or impulse forces from a human pressing a button or switch action Examines hybrid energy harvesting approaches that augment the reliability of the wireless sensor node’s operation Discusses a hybrid wind and solar energy harvesting scheme to simultaneously use both energy sources and therefore extend the lifetime of the wireless sensor node Explores a hybrid of indoor ambient light and TEH scheme that uses only one power management circuit to condition the combined output power harvested from both energy sources Although the author focuses on small-scale energy harvesting, the systems discussed can be upsized to large-scale renewable energy harvesting systems. The book goes beyond theory to explore practical applications that not only solve real-life energy issues but pave the way for future work in this area.

Energy Harvesting Communications: Principles and Theories (Wiley - IEEE)

by Yunfei Chen

Provides a systematic overview of a hot research area, examining the principles and theories of energy harvesting communications This book provides a detailed and advanced level introduction to the fundamentals of energy harvesting techniques and their use in state-of-the-art communications systems. It fills the gap in the market by covering both basic techniques in energy harvesting and advanced topics in wireless communications. More importantly, it discusses the application of energy harvesting in communications systems to give readers at different levels a full understanding of these most recent advances in communications technologies. The first half of Energy Harvesting Communications: Principles and Theories focuses on the challenges brought by energy harvesting in communications. The second part of the book looks at different communications applications enhanced by energy harvesting. It offers in-depth chapters that: discuss different energy sources harvested for communications; examine the energy harvesters used for widely used sources; study the physical layer and upper layer of the energy harvesting communications device; and investigate wireless powered communications, energy harvesting cognitive radios, and energy harvesting relaying as applications. Methodically examines the state-of-the-art of energy harvesting techniques Provides comprehensive coverage from basic energy harvesting sources and devices to the end users of these sources and devices Looks at the fundamental principles of energy harvesting communications, and biomedical application and intra-body communications Written in a linear order so that beginners can learn the subject and experienced users can attain a broader view Written by a renowned expert in the field, Energy Harvesting Communications: Principles and Theories is an excellent resource for students, researchers, and others interested in the subject.

Refine Search

Showing 22,126 through 22,150 of 74,039 results