Browse Results

Showing 22,326 through 22,350 of 72,693 results

Energy for the Future (Earth in Danger)

by Helen Orme

Burning fossil fuels, such as oil and coal, may be accelerating Earth's climate change. How can we develop clean, renewable sources of energy and reduce our dependence on fossil fuels? Energy for the Future clearly presents the pros and cons of alternative energy sources-- from wind, water, and solar power to bio-fuels, hydrogen fuel cells, and nuclear power. A section in the back of the book will inspire young environmentalists by suggesting ways they can help protect their planet.

Energy from Microalgae (Green Energy And Technology)

by Eduardo Jacob-Lopes Leila Queiroz Zepka Maria Isabel Queiroz

This book presents an authoritative and comprehensive overview of the production and use of microalgal biomass and bioproducts for energy generation. It also offers extensive information on engineering approaches to energy production, such as process integration and process intensification in harnessing energy from microalgae. Issues related to the environment, food, chemicals and energy supply pose serious threats to nations’ success and stability. The challenge to provide for a rapidly growing global population has made it imperative to find new technological routes to increase the production of consumables while also bearing in mind the biosphere’s ability to regenerate resources. Microbial biomass is a bioresource that provides effective solutions to these challenges.Divided into eight parts, the book explores microalgal production systems, life cycle assessment and the bio-economy of biofuels from microalgae, process integration and process intensification applied to microalgal biofuels production. In addition, it discusses the main fuel products obtained from microalgae, summarizing a range of useful energy products derived from algae-based systems, and outlines future developments. Given the book’s breadth of coverage and extensive bibliography, it offers an essential resource for researchers and industry professionals working in renewable energy.

Energy from Organic Materials (Encyclopedia Of Sustainability Science And Technology Ser.)

by Martin Kaltschmitt

This comprehensive reference is a state-of-the-art survey of biomass as an energy carrier for the provision of heat, electricity, and transportation fuel, considering technical, economic, environmental, and social aspects. On a global scale, biomass contributes roughly 12 to 16 % of the energy needed to cover the overall primary energy consumption. Thus far, it is humanity’s most important source of renewable energy, used on practically all continents and growing in importance even in industrialized nations. With detailed coverage of the production of solid, gaseous and liquid fuels, as well as a final energy provision, this volume serves as an introduction for readers just entering the field, but also offers new insights, up-to-date information, as well as latest findings for advanced researchers, industry experts, and decision makers.

Energy from the Biomass: Third EC conference

by W. Palz J. Coombs D. O. Hall

This book is based on third European Conference on Energy from Biomass held in Venice. It covers energy security, environmental aspects, relieving the overproduction in some agricultural sectors and creation of jobs in rural areas.

Energy from the Desert: Feasability of Very Large Scale Power Generation (VLS-PV)

by Kosuke Kurokawa

The world's deserts are sufficiently large that, in theory, covering a fraction of their landmass with PV systems could generate many times the current primary global energy supply. This Energy from the Desert volume examines and evaluates the potential of very large scale photovoltaic power generation (VLS-PV) systems. Following from the success of the first book on the subject, the authors present practical case studies of both virtual and real projects based on selected regions (including the Mediterranean, the Middle East, the Gobi Desert and Western Australia) and their specific socio-economic dynamics, and argue that VLS-PV systems in desert areas will be readily available in the near future. As the essential companion to the previous International Energy Agency (IEA) volume it reiterates and develops key concepts introduced by the original study and provides firm practical recommendations to achieve long-term targets for policy-makers and investors.

Energy from the Desert: Practical Proposals for Very Large Scale Photovoltaic Systems

by Kosuke Kurokawa Keiichi Komoto Peter van der Vleuten David Faiman

The world's deserts are sufficiently large that, in theory, covering a fraction of their landmass with PV systems could generate many times the current primary global energy supply. In three parts, this study details the background and concept of VLS-PV, maps out a development path towards the realization of VLS-PV systems and provides firm recommendations to achieve long-term targets. This represents the first study to provide a concrete set of answers to the questions that must be addressed in order to secure and exploit the potential for VLS-PV technology and its global benefits.

Energy from the Desert 4: Very Large Scale PV Power -State of the Art and Into The Future

by Keiichi KomotoChristian BreyerEdwin CunowKarim MegherbiDavid FaimanPeter van der Vleuten

The fourth volume in the established Energy from the Desert series examines and evaluates the potential and feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) systems, which have capacities ranging from several megawatts to gigawatts, and to develop practical project proposals toward implementing the VLS-PV systems in the future. It comprehensively analyses all major issues involved in such large scale applications, based on the latest scientific and technological developments by means of close international co-operation with experts from different countries. From the perspective of the global energy situation, global warming, and other environmental issues, it is apparent that VLS-PV systems can: contribute substantially to global energy needsbecome economically and technologically feasible soon contribute significantly to global environmental protection contribute significantly to socio-economic development This book recognises that very large scale solar electricity generation provides economic, social and environmental benefits, security of electricity supply and fair access to affordable and sustainable energy solutions and that VLS-PV systems must be one of the promising options for large-scale deployment of PV systems and renewable energy technologies.

Energy from Waste: Production and Storage

by Ram K. Gupta

Conversion of waste into value-added products such as energy transforms a potential environmental problem into a sustainable solution. Energy from Waste: Production and Storage focuses on the conversion of waste from various sources for use in energy production and storage applications. It provides the state-of-the-art in developing advanced materials and chemicals for energy applications using wastes and discusses the various treatment processes and technologies. Covers synthesis of usable materials from various types of waste and their application in energy production and storage Presents an overview and applications of wastes for green energy production and storage Provides fundamentals of electrochemical behavior and understanding of energy devices such as fuel cells, batteries, supercapacitors, and solar cells Elaborates on advanced technologies used to convert waste into green biochemical energy This work provides new direction to scientists, researchers, and students in materials and chemical engineering and related subjects seeking to sustainable solutions to energy production and waste management.

Energy Futures: The Story of Fossil Fuel, Greenhouse Gas, and Climate Change

by Daniel Soeder

The objective of this book is to help readers better understand the links between fossil fuel, greenhouse gas, and climate change in a clear, explanatory format. It avoids sensationalism and politics, using plain language to explain the details of the science, how the science works, and how we know what we know. It describes the history of fossil fuels, why fossil fuel combustion products are a problem, and what must be done to address the impacts on climate. It provides details about a number of energy engineering solutions to replace fossil fuels and technology called geoengineering that can cool the planet and directly remove greenhouse gases from the atmosphere. Some of these technologies can be implemented almost immediately, and others may be applied in the future. Many young people are pessimistic about the future and prepared to give up on addressing climate change. The book strives to maintain hope throughout that humanity can solve this and other environmental problems. The climate crisis was caused by human engineering, and human engineering can fix it. The goal is to produce informed readers that can have responsible discussions with their political leaders about implementing solutions to climate change.

Energy Geostructures: Innovation in Underground Engineering

by Lyesse Laloui Alice Di Donna

Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures. The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study. Contents Part 1. Physical Modeling of Energy Piles at Different Scales 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui. 2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui. 3. Observed Response of Energy Geostructures, Peter Bourne-Webb. 4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari. 5. Centrifuge Modeling of Energy Foundations, John S. McCartney. Part 2. Numerical Modeling of Energy Geostructures 6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui. 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sébastien Burlon and Julien Habert. 8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart. 9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud. 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon. 11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers. Part 3. Engineering Practice 12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis, Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin. 13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui. 14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud. About the Authors Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.

Energy Geotechnics: Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT 2016, Kiel, Germany, 29-31 August 2016

by Frank Wuttke, Sebastian Bauer and Marcelo Sánchez

Energy Geotechnics includes 97 technical papers presented at the 1st International Conference on Energy Geotechnics (ICEGT 2016, Kiel, Germany, 29-31 August 2016). The contributions provides significant advances and critical challenges facing the areas of fundamentals, constitutive and numerical modelling, testing techniques and energy geotechnics applications. Energy Geotechnics contains seven regular sessions and six minisymposia, with contributions on discrete and continuum based modelling as well as investigations based on experimental studies at various scales. The papers on discrete and continuum based modelling examine the behaviour of gas hydrate sediments, cyclic and Themo-Hydro-Mechanical (T-H-M) modelling of energy piles, non-linear behaviour of energy geo-storage and geo-structures, deformation of geomaterials, modelling of borehole heat exchangers and energy walls, analysis of hydraulic fracturing and discontinuities in reservoirs, engineering problems involving gas hydrates sediments, and modelling of environmental impact of energy geotechnical processes.

Energy Harvesting: Enabling IoT Transformations (Chapman & Hall/CRC Internet of Things)

by Deepti Agarwal Kimmi Verma Shabana Urooj

Energy Harvesting: Enabling IoT Transformations gives insight into the emergence of energy harvesting technology and its integration with IoT-based applications. The book educates the reader on how energy is harvested from different sources, increasing the effectiveness, efficiency and lifetime of IoT devices. • Discusses the technology and practices involved in energy harvesting for biomedical, agriculture and automobile industries • Compares the performance of IoT-based devices with and without energy harvesting for different applications • Studies the challenges and issues in the implementation of EH-IoT • Includes case studies on energy-harvesting approach for solar, thermal and RF sources • Analyzes the market and business opportunities for entrepreneurs in the field of EH-IoT. This book is primarily aimed at graduates and research scholars in wireless sensor networks. Scientists and R&D workers in industry will also find this book useful.

Energy Harvesting: Technologies, Systems, and Challenges (EuMA High Frequency Technologies Series)

by Apostolos Georgiadis Ana Collado Manos M. Tentzeris

A thorough treatment of energy harvesting technologies, highlighting radio frequency (RF) and hybrid-multiple technology harvesting. The authors explain the principles of solar, thermal, kinetic, and electromagnetic energy harvesting, address design challenges, and describe applications. The volume features an introduction to switched mode power converters and energy storage and summarizes the challenges of different system implementations, from wireless transceivers to backscatter communication systems and ambient backscattering. This practical resource is essential for researchers and graduate students in the field of communications and sensor technology, in addition to practitioners working in these fields.

Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems (Energy, Power Electronics, and Machines)

by Alireza Khaligh Omer C. Onar

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Energy Harvesting and Energy Efficiency

by Erol Kurt Frede Blaabjerg Naser Mahdavi Tabatabaei Nicu Bizon

This book presents basic and advanced concepts for energy harvesting and energy efficiency, as well as related technologies, methods, and their applications. The book provides up-to-date knowledge and discusses the state-of-the-art equipment and methods used for energy harvesting and energy efficiency, combining theory and practical applications. Containing over 200 illustrations and problems and solutions, the book begins with overview chapters on the status quo in this field. Subsequent chapters introduce readers to advanced concepts and methods. In turn, the final part of the book is dedicated to technical strategies, efficient methods and applications in the field of energy efficiency, which also makes it of interest to technicians in industry. The book tackles problems commonly encountered using basic methods of energy harvesting and energy efficiency, and proposes advanced methods to resolve these issues. All the methods proposed have been validated through simulation and experimental results. These "hot topics" will continue to be of interest to scientists and engineers in future decades and will provide challenges to researchers around the globe as issues of climate change and changing energy policies become more pressing. Here, readers will find all the basic and advanced concepts they need. As such, it offers a valuable, comprehensive guide for all students and practicing engineers who wishing to learn about and work in these fields.

Energy Harvesting and Storage: Fundamentals and Materials (Energy Systems in Electrical Engineering)

by M. K. Jayaraj Aldrin Antony P. P. Subha

This book covers recent technologies developed for energy harvesting as well as energy storage applications. The book includes the fabrication of optoelectronic devices such as high-efficiency c-Si solar cells, carrier selective c-Si solar cells, quantum dot, and dye-sensitized solar cells, perovskite solar cells, Li-ion batteries, and supercapacitors. Aiming at beginners in the respective areas, the basic principles and mechanism of the optoelectronic phenomena behind every application are detailed in the book. The book offers schematics, tables, graphical representations, and illustrations to enable better understanding. Among the nine chapters, the first four chapters are dedicated to various types of high-efficiency solar cells and the remaining chapters discuss the methods for energy storage such as the fabrication of batteries and supercapacitors. The book is a useful reference for active researchers and academicians working in energy harvesting and energy storage areas.

Energy Harvesting and Storage Devices: Sustainable Materials and Methods

by Laxman Raju Thoutam J Ajayan D Nirmal

The book discusses the materials, devices, and methodologies that can be used for energy harvesting including advanced materials, devices, and systems. It describes synthesis and fabrication details of energy storage materials. It explains use of high-energy density thin films for future power systems, flexible and biodegradable energy storage devices, fuel cells and supercapacitors, nanogenerators for self-powered systems, and innovative energy harvesting methodologies. Features: Covers all relevant topics in energy harvesting research and focuses on the current state-of-the-art techniques and materials for this application. Showcases the true potential of the nature in energy harvesting industry by discussing various harvesting mechanisms based on renewable and sustainable energy sources. Explains the recent trends in flexible and wearable energy storage devices that are currently being used in IoT-based smart devices. Overviews of the state-of-the-art research performed on design and development of energy harvesting devices. Highlights the interdisciplinary research efforts needed in energy harvesting and storage devices to transform conceptual ideas to working prototypes. This book is aimed at graduate students and researchers in emerging materials, energy engineering, including harvesting and storage.

Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation

by Yen Kheng Tan

Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation provides a wide range of coverage of various energy harvesting techniques to enable the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). It supplies a practical overview of the entire EH-WSN system from energy source all the way to energy usage by wireless sensor nodes/network. After an in-depth review of existing energy harvesting research thus far, the book focuses on: Outlines two wind energy harvesting (WEH) approaches, one using a wind turbine generator and one a piezoelectric wind energy harvester Covers thermal energy harvesting (TEH) from ambient heat sources with low temperature differences Presents two types of piezoelectric-based vibration energy harvesting systems to harvest impact or impulse forces from a human pressing a button or switch action Examines hybrid energy harvesting approaches that augment the reliability of the wireless sensor node’s operation Discusses a hybrid wind and solar energy harvesting scheme to simultaneously use both energy sources and therefore extend the lifetime of the wireless sensor node Explores a hybrid of indoor ambient light and TEH scheme that uses only one power management circuit to condition the combined output power harvested from both energy sources Although the author focuses on small-scale energy harvesting, the systems discussed can be upsized to large-scale renewable energy harvesting systems. The book goes beyond theory to explore practical applications that not only solve real-life energy issues but pave the way for future work in this area.

Energy Harvesting Communications: Principles and Theories (Wiley - IEEE)

by Yunfei Chen

Provides a systematic overview of a hot research area, examining the principles and theories of energy harvesting communications This book provides a detailed and advanced level introduction to the fundamentals of energy harvesting techniques and their use in state-of-the-art communications systems. It fills the gap in the market by covering both basic techniques in energy harvesting and advanced topics in wireless communications. More importantly, it discusses the application of energy harvesting in communications systems to give readers at different levels a full understanding of these most recent advances in communications technologies. The first half of Energy Harvesting Communications: Principles and Theories focuses on the challenges brought by energy harvesting in communications. The second part of the book looks at different communications applications enhanced by energy harvesting. It offers in-depth chapters that: discuss different energy sources harvested for communications; examine the energy harvesters used for widely used sources; study the physical layer and upper layer of the energy harvesting communications device; and investigate wireless powered communications, energy harvesting cognitive radios, and energy harvesting relaying as applications. Methodically examines the state-of-the-art of energy harvesting techniques Provides comprehensive coverage from basic energy harvesting sources and devices to the end users of these sources and devices Looks at the fundamental principles of energy harvesting communications, and biomedical application and intra-body communications Written in a linear order so that beginners can learn the subject and experienced users can attain a broader view Written by a renowned expert in the field, Energy Harvesting Communications: Principles and Theories is an excellent resource for students, researchers, and others interested in the subject.

Energy Harvesting for Wearable Sensor Systems: Inductive Architectures for the Swing Excitation of the Leg (Springer Series in Advanced Microelectronics #62)

by Klevis Ylli Yiannos Manoli

This book investigates several non-resonant inductive harvester architectures in order to find the magnet coil arrangement that generates the largest power output. The book is useful as a step-by-step guide for readers unfamiliar with this form of energy harvesting, but who want to build their own system models to calculate the magnet motion and, from that, the power generation available for body-worn sensor systems. The detailed description of system model development will greatly facilitate experimental work with the aim of fabricating the design with the highest predicted power output. Based on the simulated optimal geometry, fabricated devices achieve an average power output of up to 43 mW during walking, an amount of power that can supply modern low-power, body-worn systems. Experiments were also carried out in industrial applications with power outputs up to 15 mW. In sum, researchers and engineers will find a step-by-step introduction to inductive harvesting and its modeling aspects for achieving optimal harvester designs in an efficient manner.

Energy Harvesting Trends for Low Power Compact Electronic Devices (EAI/Springer Innovations in Communication and Computing)

by Anveshkumar Nella Anirban Bhowmick Chandan Kumar Maheswar Rajagopal

This book focuses on the numerous energy harvesting techniques and their system implementation towards the fulfilment of energy requirements in compact electronic devices. These cover a wide range of applications in portable devices, bio-medical services, agriculture needs, mechanical systems, sensor networks, automobiles, food sector, home appliances, industry needs, etc. The authors detail energy harvesting methods using the latest technologies in acoustics, bio-chemical, thermal, artificial light, fluid flow, vibrations, EM energy, RF energy, piezoelectric, electrostatic, photovoltaic, thermoelectric, hybrid harvesting, ultrasonic, infrared, light, wind, and solar. The book is intended for researchers, academics, professionals, and students in energy harvesting.

Energy Harvesting Wireless Communications (Wiley - IEEE)

by Chuang Huang Sheng Zhou Jie Xu Zhisheng Niu Rui Zhang Shuguang Cui

Energy Harvesting Wireless Communications offers a review of the most current research as well as the basic concepts, key ideas and powerful tools of energy harvesting wireless communications. Energy harvesting is both renewable and cheap and has the potential for many applications in future wireless communication systems to power transceivers by utilizing environmental energy such as solar, thermal, wind, and kinetic energy. The authors—noted experts in the field—explore the power allocation for point-to-point energy harvesting channels, power allocation for multi-node energy harvesting channels, and cross-layer design for energy harvesting links. In addition, they offer an in-depth examination of energy harvesting network optimization and cover topics such as energy harvesting ad hoc networks, cost aware design for energy harvesting assisted cellular networks, and energy harvesting in next generation cellular networks.

Energy Harvesting with Functional Materials and Microsystems (Devices, Circuits, and Systems #23)

by Madhu Bhaskaran Sharath Sriram Krzysztof Iniewski

For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growing field of energy harvesting from a materials and device perspective, with resulting technologies capable of enabling low-power implantable sensors or a large-scale electrical grid. In addition to the design, implementation, and components of energy-efficient electronics, the book covers current advances in energy-harvesting materials and technology, including: High-efficiency solar technologies with lower cost than existing silicon-based photovoltaics Novel piezoelectric technologies utilizing mechanical energy from vibrations and pressure The ability to harness thermal energy and temperature profiles with thermoelectric materials Whether you’re a practicing engineer, academician, graduate student, or entrepreneur looking to invest in energy-harvesting devices, this book is your complete guide to fundamental materials and applied microsystems for energy harvesting.

Energy Humanities. Current State and Future Directions

by Matúš Mišík Nada Kujundžić

This edited book explicitly deals with the energy humanities, summarising existing knowledge in the area and outlining possible future directions for the nascent field. Assuming a variety of disciplinary stances and using a plethora of methodologies to address a number of pressing energy-related issues, the individual contributions showcase the crucial importance of including the humanities and social sciences into the current discussion on energy. Furthermore, they illustrate one of the central claims of the energy humanities, namely, that energy permeates all aspects of our contemporary modes of existence, and is inextricably linked with historical, political, social, ideological, and cultural issues, relationships, and practices.Through numerous case studies, Energy Humanities and Energy Transition looks to the past, present, and future in search of examples of best practices and possible models for pathways to a successful energy transition and life ‘after oilʼ. While much of existing research on energy humanities has been criticised for its excessive focus on oil, this book considers a wide range of energy resources, including nuclear energy, renewables, and natural gas. Furthermore, it brings to the forefront under-researched topics such as the colonial legacy inscribed in energy infrastructure and the energy history of the humanities. The contributions in this volume explore not only how the perspectives and expertise of the humanities and social sciences can alter the discourse on energy transition, and our way of thinking about possible solutions and future scenarios, but also how their new focus on energy affects the disciplines themselves.Energy Humanities and Energy Transition presents a variety of theories, methods, topics, and disciplinary angles, meaning it will be of interest to a wide audience, from practitioners and policy makers, to students and researchers working across the humanities and social sciences. The thematically oriented structure, distinct focus of each individual chapter, and the comprehensive introduction and conclusion that contextualize the contributions within the wider framework of energy transition, make this edited book accessible to readers from many different fields and suitable for various university programs.

The Energy Imperative: 100 Percent Renewable Now

by Hermann Scheer

For decades, Hermann Scheer was one of the world's leading proponents of renewable energy. In this, his last book before his death in 2010, he lays out his vision for a planet 100% powered by renewables and examines the fundamental ethical and economic imperatives for such a shift. And most importantly, he demonstrates why the time for this transition is now. In Scheer's view, talk of bridging technologies such as carbon capture and storage or nuclear energy even (and perhaps especially) by environmentalists is actively damaging the more the pressing agenda of the move to 100% renewable energy. Instead, he offers up examples of the technologies which are working (economically) today and details the policy and market conditions which would allow them to flourish.

Refine Search

Showing 22,326 through 22,350 of 72,693 results