Browse Results

Showing 26,476 through 26,500 of 72,459 results

Fracture, Fatigue, Failure and Damage Evolution, Volume 8

by Allison M. Beese Alan T. Zehnder Shuman Xia

Fracture, Fatigue, Failure and Damage Evolution, Volume 8 represents the eighth of nine volumes of technical papers presented at the Society for Experimental Mechanics (SEM) 15th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 8-11, 2015. The full set of proceedings also includes volumes on: Dynamic Behavior of Materials, Challenges in Mechanics of Time Dependent Materials, Advancement of Optical Methods in Experimental Mechanics, Experimental and Applied Mechanics, 16th International Symposium on MEMS and Nanotechnology, International Symposium on the Mechanics of Composite and Multi-functional Materials, 5th International Symposium on the Mechanics of Biological Systems and Materials, International Symposium on the Mechanics of Composite and Multi-functional Materials; and Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems.

Fracture, Fatigue, Failure and Damage Evolution, Volume 8

by Alan T. Zehnder Jay Carroll Kavan Hazeli Ryan B. Berke Garrett Pataky Matthew Cavalli Alison M. Beese Shuman Xia

Fracture, Fatigue, Failure and Damage Evolution, Volume 8 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the eighth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: In-situ Techniques for Fracture & Fatigue General Topics in Fracture & Fatigue Fracture & Fatigue of Composites Damage, Fracture, Fatigue & Durability Interfacial Effects in Fracture & Fatigue Damage Detection in Fracture & Fatigue

Fracture Mechanics: Fundamentals and Applications, Fourth Edition

by Ted L. Anderson

Fracture Mechanics: Fundamentals and Applications, Fourth Edition is the most useful and comprehensive guide to fracture mechanics available. It has been adopted by more than 150 universities worldwide and used by thousands of engineers and researchers. This new edition reflects the latest research, industry practices, applications, and computational analysis and modeling. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach. Numerous chapter problems have been added or revised, and additional resources are available for those teaching college courses or training sessions. Dr. Anderson’s own website can be accessed at www.FractureMechanics.com.

Fracture Mechanics: An Introduction (Solid Mechanics and Its Applications #263)

by Emmanuel E. Gdoutos

This book discusses the basic principles and traditional applications of fracture mechanics, as well as the cutting-edge research in the field over the last three decades in current topics like composites, thin films, nanoindentation, and cementitious materials.Experimental methods play a major role in the study of fracture mechanics problems and are used for the determination of the major fracture mechanics quantities such as stress intensity factors, crack tip opening displacements, strain energy release rates, crack paths, crack velocities in static and dynamic problems. These methods include electrical resistance strain gauges, photoelasticity, interferometry techniques, geometric and interferometry moiré, and the optical method of caustics.Furthermore, numerical methods are often used for the determination of fracture mechanics parameters. They include finite and boundary element methods, Green’s function and weight functions, boundary collocation, alternating methods, and integral transforms continuous dislocations.This third edition of the book covers the basic principles and traditional applications, as well as the latest developments of fracture mechanics. Featuring two new chapters and 30 more example problems, it presents a comprehensive overview of fracture mechanics, and includes numerous examples and unsolved problems. This book is suitable for teaching fracture mechanics courses at the undergraduate and graduate levels. A “solutions manual” is available for course instructors upon request.

Fracture Mechanics: Worked Examples

by John Knott Paul Witney

This book is aimed at those in both industry and academic institutions who require a grounding not only in the basic principles of this important field but also in the practical aspects of evaluating fracture mechanics parameters.

Fracture Mechanics

by Nestor Perez

The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing.

Fracture Mechanics: Fundamentals and Applications

by Russell Wanhill Michael Janssen Jan Zuidema

This book covers both theoretical and practical aspects of fracture mechanics and integrates materials science with solid mechanics.

Fracture Mechanics

by Robert P. Wei

Fracture and "slow" crack growth reflect the response of a material (i. e. , its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. There is therefore a need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure, in terms of the key internal and external variables, and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and ceramics. Examples from this research are included to highlight the approach and applicability of the findings in practical durability and reliability problems.

Fracture Mechanics

by Alan T. Zehnder

Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.

Fracture Mechanics 1: Analysis of Reliability and Quality Control

by Ammar Grous

This first book of a 3-volume set on Fracture Mechanics is mainly centered on the vast range of the laws of statistical distributions encountered in various scientific and technical fields. These laws are indispensable in understanding the probability behavior of components and mechanical structures that are exploited in the other volumes of this series, which are dedicated to reliability and quality control.The author presents not only the laws of distribution of various models but also the tests of adequacy suited to confirm or counter the hypothesis of the law in question, namely the Pearson (x2) test, the Kolmogorov-Smirnov (KS) test, along with many other relevant tests.This book distinguishes itself from other works in the field through its originality in presenting an educational approach which aims at helping practitioners both in academia and industry. It is intended for technicians, engineers, designers, students, and teachers working in the fields of engineering and vocational education. The main objective of the author is to provide an assessment of indicators of quality and reliability to aid in decision-making. To this end, an intuitive and practical approach, based on mathematical rigor, is recommended.

Fracture Mechanics 2: Applied Reliability (Wiley-iste Ser. #737)

by Ammar Grous

This second book of a 3-volume set on Fracture Mechanics completes the first volume through the analysis of adjustment tests suited to correctly validating the justified use of the laws conforming to the behavior of the materials and structures under study.This volume focuses on the vast range of statistical distributions encountered in reliability. Its aim is to run statistical measurements, to present a report on enhanced measures in mechanical reliability and to evaluate the reliability of repairable or unrepairable systems. To achieve this, the author presents a theoretical and practice-based approach on the following themes: criteria of failures; Bayesian applied probability; Markov chains; Monte Carlo simulation as well as many other solved case studies.This book distinguishes itself from other works in the field through its originality in presenting an educational approach which aims at helping practitioners both in academia and industry. It is intended for technicians, engineers, designers, students, and teachers working in the fields of engineering and vocational education. The main objective of the author is to provide an assessment of indicators of quality and reliability to aid in decision-making. To this end, an intuitive and practical approach, based on mathematical rigor, is recommended.

Fracture Mechanics 3: Applied Quality Control (Wiley-iste Ser. #736)

by Ammar Grous

This third book of a 3-volume set on Fracture Mechanics adds a pragmatic and supportive character to the previous volumes by focusing on case studies using corrected exercises that teachers, students or engineers will find extremely useful. Due to the wide themes approached in this series, it can also be used to organize work in this field in a new way, as well as in the maintenance of industrial plants.Several cases of sampling plans and their applications in industry are presented, as well as several solved case studies on the main indicators of capability according to ISO/TS 16949, ISO 8258 and FORD.This book distinguishes itself from other works in the field through its originality in presenting an educational approach which aims at helping practitioners both in academia and industry. It is intended for technicians, engineers, designers, students, and teachers working in the fields of engineering and vocational education. The main objective of the author is to provide an assessment of indicators of quality and reliability to aid in decision-making. To this end, an intuitive and practical approach, based on mathematical rigor, is recommended.

Fracture Mechanics and Crack Growth (Wiley-iste Ser.)

by Naman Recho

This book presents recent advances related to the following two topics: how mechanical fields close to material or geometrical singularities such as cracks can be determined; how failure criteria can be established according to the singularity degrees related to these discontinuities. Concerning the determination of mechanical fields close to a crack tip, the first part of the book presents most of the traditional methods in order to classify them into two major categories. The first is based on the stress field, such as the Airy function, and the second resolves the problem from functions related to displacement fields. Following this, a new method based on the Hamiltonian system is presented in great detail. Local and energetic approaches to fracture are used in order to determine the fracture parameters such as stress intensity factor and energy release rate. The second part of the book describes methodologies to establish the critical fracture loads and the crack growth criteria. Singular fields for homogeneous and non-homogeneous problems near crack tips, v-notches, interfaces, etc. associated with the crack initiation and propagation laws in elastic and elastic-plastic media, allow us to determine the basis of failure criteria. Each phenomenon studied is dealt with according to its conceptual and theoretical modeling, to its use in the criteria of fracture resistance; and finally to its implementation in terms of feasibility and numerical application. Contents 1. Introduction.Part 1: Stress Field Analysis Close to the Crack Tip2. Review of Continuum Mechanics and the Behavior Laws.3. Overview of Fracture Mechanics.4. Fracture Mechanics.5. Introduction to the Finite Element Analysis of Cracked Structures.Part 2: Crack Growth Criteria6. Crack Propagation.7. Crack Growth Prediction in Elements of Steel Structures Submitted to Fatigue.8. Potential Use of Crack Propagation Laws in Fatigue Life Design.

Fracture Mechanics of Cementitious Materials

by B. Cotterell Y.W. Mai

The application of fracture mechanics to cementitious materials allows the investigation of many important factors relating to the durability of these materials. This new book provides a comprehensive and readable exposition of this subject and is written by two of the world's foremost experts.

Fracture Mechanics of Electrically Passive and Active Composites with Periodic Cracking along the Interface (Springer Tracts in Mechanical Engineering)

by Volodymyr Loboda Sergey Kozinov

This book offers a comprehensive and timely review of the fracture behavior of bimaterial composites consisting of periodically connected components, i.e. of bimaterial composites possessing periodical cracks along the interface. It first presents an overview of the literature, and then analyzes the isotropic, anisotropic and piezoelectric/dielectric properties of bimaterial components, gradually increasing the difficulty of the solutions discussed up to the coupled electromechanical problems. While in the case of isotropic and anisotropic materials it covers the problems generated by an arbitrary set of cracks, for the piezoelectric materials it focuses on studying the influence of the electric permittivity of the crack’s filler, using not only a simple, fully electrically permeable model, but also a physically realistic, semi-permeable model. Throughout the analyses, the effects of the contact of the crack faces are taken into account so as to exclude the physically unrealistic interpenetration of the composite components that are typical of the classical open model. Further, the book derives and examines the mechanical and electromechanical fields, stress and electric intensity factors in detail. Providing extensive information on the fracture processes taking place in composite materials, the book helps readers become familiar with mathematical methods of complex function theory for obtaining exact analytical solutions.

Fracture Mechanics of Piezoelectric Solids with Interface Cracks

by Volodymyr Govorukha Marc Kamlah Volodymyr Loboda Yuri Lapusta

This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the "open" crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks between two dissimilar piezoelectric materials. It also investigates the model of a crack with electro-mechanical pre-fracture zones. The formulated problems are reduced to problems of linear relationship, which correspond to different crack models, and their exact analytical solutions are found. The book presents in detail the expressions for stress and electric displacement intensity factors, as well as for the energy release rate. The influence of the electric permittivity of the crack, the mechanical load and the electric field upon the electro-elastic state, as well as the main fracture mechanical parameters, are analyzed and clearly illustrated. This book addresses postgraduate students, university teachers and researchers dealing with the problems of fracture mechanics of piezoelectric materials, as well as engineers who are active in the analysis of strength and durability of piezoelectric constructions.

The Fracture Mechanics of Plant Materials: Wood And Bamboo

by Zhuoping Shao Fuli Wang

This book introduces readers to the application of fracture mechanics and mesomechanics to the analysis of the fracture behaviors of wood and bamboo. It presents a range of research methods to study the fracture behaviors of wood and bamboo, taking into account their various fracture mechanisms resulting from differences in their macroscopic and microscopic structures. It combines theoretical analysis with experiments, as well as various mathematical tools and experimental approaches. The research methods are illustrated by simple schematic diagrams, and the results obtained are largely presented as tables and figures, helping to make the book concise and compact. As such, it provides a valuable guide to the development of new biocomposites that possess exceptional strength and toughness properties and successfully overcome the shortcomings of biomaterials.

Fracture Mechanics Test Methods For Concrete

by S. P. Shah A. Carpinteri

Compares currently used methods in determining concrete toughness and presents recommended test procedures with theories and models for describing cracking and fracturing phenomena. Effects of loading rate, temperature and humidity are also examined. Well referenced and illustrated, this book is filled with practical technical information for mater

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics

by B. L. Karihaloo G. Baker

This book derives from the invited IUTAM Symposium in September 1993. The contributions discuss recent advances in fracture mechanics studies of concrete, rock, ceramics and other brittle disordered materials at micro and structural levels. It draws together research and new applications in continuum, damage and fracture mechanics approaches.

The Fracture of Brittle Materials: Testing and Analysis

by Stephen W. Freiman John J. Mecholsky Jr.

Provides a modern, practical approach to the understanding and measurement procedures relevant to the fracture of brittle materials <P><P>This book examines the testing and analysis of the fracture of brittle materials. Expanding on the measurement and analysis methodology contained in the first edition, it covers the relevant measurements (toughness and strength), material types, fracture mechanics, measurement techniques, reliability and lifetime predictions, microstructural considerations, and material/test selection processes appropriate for the analysis of the fracture behavior of brittle materials. <P><P>The Fracture of Brittle Materials: Testing and Analysis, Second Edition summarizes the concepts behind the selection of a test procedure for fracture toughness and strength, and goes into detail on how the statistics of fracture can be used to assure reliability. <P><P>It explains the importance of the role of microstructure in these determinations and emphasizes the use of fractographic analysis as an important tool in understanding why a part failed. The new edition includes a significant quantity of material related to the fracture of biomaterials, and features two new chapters—one on thermal shock, the other on the modeling of the fracture process. <P><P>It also expands on a discussion of how to treat the statistics of fracture strength data to ensure reliability. Provides practical analysis of fracture toughness and strength Introduces the engineering and materials student to the basic concepts necessary for analyzing brittle fracture <P><P>Contains new statistical analysis procedures to allow for the prediction of the safe design of brittle components <P><P>Contains real-world examples to assist the reader in applying the concepts to their own research, material development, and quality-control needs <P><P> The Fracture of Brittle Materials: Testing and Analysis, Second Edition is an important resource for all students, technicians, engineers, scientists, and researchers involved in the study, analysis, creation, or testing of ceramics.

Fracture of Materials Under Compression Along Cracks (Advanced Structured Materials #138)

by Aleksander N. Guz Viacheslav L. Bogdanov Vladimir M. Nazarenko

This book addresses the problems of fracture mechanics of materials with cracks under the loading directed along the cracks. It considers two non-classical fracture mechanisms, namely the fracture of bodies compressed along cracks and the fracture of materials with initial (residual) stresses acting in parallel to the surfaces of cracks location, and presents new approaches (also including combined one) developed in the framework of three-dimensional linearized mechanics of deformable bodies. It then discusses the results of studies on two- and three-dimensional problems for various configurations of crack locations in isotropic and anisotropic materials, and based on these results, critically evaluates the accuracy and applicability limits of the “beam approximation” approach, which is widely used to study various problems of the fracture of bodies under compression along parallel cracks.

Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry: Proceedings of the 7th Symposium Organised by the Technical Advisory Group on Structural Integrity in the Nuclear Industry

by P. B. Hirsch

This volume brings together the papers presented at the 7th Symposium organised by the Technical Advisory Group on Structural Integrity of Nuclear Plant (TAGS!) which was held at the TWI Conference Centre, Great Abington, UK on 29 April 1999. The Symposium, which marked 25 years of TAGSI and its predecessor, the Light Water Reactor Study Group (LWRSG), was dedicated to Sir Alan Cottrell FREng, FRS, whose impact on the fields of integrity, reliability and safety of engineering structures and components has been second to none.

Fracture Processes of Concrete (New Directions in Civil Engineering #12)

by Jan G.M. van Mier

Despite tremendous advances made in fracture mechanics of concrete in recent years, very little information has been available on the nature of fracture processes and on reliable test methods for determining parameters for the different models. Moreover, most texts on this topic discuss numerical modeling but fail to consider experimentation. This book fills these gaps and synthesizes progress in the field in a simple, straightforward manner geared to practical applications.

Fractured: Book Two in the Slated Trilogy (Slated #2)

by Teri Terry

Perfect for fans of the dystopian settings of The Hunger Games and Divergent, the gripping second installment of the Slated trilogy is a riveting psychological thriller set in a future where violent teens have their memory erased as an alternative to jail. Kyla has been Slated—her personality wiped blank, her memories lost to her forever. Or so she thought. She shouldn’t be able to remember anything. But increasingly she can—and she’s discovering that there are a lot of dark secrets locked away in her memories. When a mysterious man from her past comes back into her life and wants her help, she thinks she’s on her way to finding the truth. But this new knowledge lands her in the middle of a tug-of-war between two dangerous adversaries, and despite her misgivings about both of them, she’s forced to choose a side for her own protection.

Fractured Futures (Bounders #5)

by Monica Tesler

Jasper and his friends must find a way to make peace between Earth and the Youli aliens before the Youli destroy the human race in this finale of the Bounders series, which Shannon Messenger calls &“richly detailed, highly imaginative.&” Jasper doesn&’t know how his life got so messed up. Was it when Mira decided to leave him for the Youli aliens? Was it discovering his former pod now divided in a war between Earth Force and the Resistance? Or was it when the Youli gave Earth an ultimatum: Join the Intragalactic Council or be destroyed? Now the Youli have invited Jasper&’s pod to visit their world. For Jasper, this means a chance to get his friends back on the same team. It also means seeing Mira again, and hopefully convincing her to come home. But once on the Youli planet, Jasper realizes there&’s something off about Mira. She&’s hiding a secret, and the more he pushes her, the more she avoids him. Meanwhile, the Intragalactic Summit approaches, a meeting that will decide the fate of Earth. But Jasper has a nagging feeling that Earth Force will sabotage the Summit—and then suffer the Youli&’s wrath. And how can Jasper convince Earth to unite if he can&’t even unite his friends? With humanity&’s future on the brink of destruction, Jasper and his friends must learn that they&’re stronger together if they have any shot at saving Earth.

Refine Search

Showing 26,476 through 26,500 of 72,459 results