- Table View
- List View
Geomechanics and Geodynamics of Rock Masses: Proceedings of the 2018 European Rock Mechanics Symposium
by Vladimir LitvinenkoGeomechanics and Geodynamics of Rock Masses contains contributions presented at EUROCK 2018, the 2018 International Symposium of the International Society for Rock Mechanics (ISRM 2018, Saint Petersburg, Russia, 22-26 May 2018). Dedicated to recent advances and achievements in the fields of geomechanics and geotechnology, the main topics of the book include: - Physical and mechanical properties of fractured rock (laboratory testing and rock properties, field measurements and site investigations)- Geophysics in rock mechanics- Rock mass strength and failure- Nonlinear problems in rock mechanics- Effect of joint water on the behavior of rock foundation- Numerical modeling and back analysis- Mineral resources development: methods and rock mechanics problems- Rock mechanics and underground construction in mining, hydropower industry and civil engineering- Rock mechanics in petroleum engineering- Geodynamics and monitoring of rock mass behavior- Risks and hazards- Geomechanics of technogenic deposits Geomechanics and Geodynamics of Rock Masses will be of interest to researchers and professionals involved in the various branches of rock mechanics and rock engineering. EUROCK 2018, organized by the Saint Petersburg Mining University, is a continuation of the successful series of ISRM symposia in Europe, which began in 1992 in Chester, UK.
Geomechanics and Geodynamics of Rock Masses: Selected Papers from the 2018 European Rock Mechanics Symposium
by Vladimir LitvinenkoGeomechanics and Geodynamics of Rock Masses – Selected Papers contains selected contributions from EUROCK 2018, the 2018 International Symposium of the International Society for Rock Mechanics (ISRM 2018, Saint Petersburg, Russia, 22—26 May 2018). Dedicated to recent advances and achievements in the fields of geomechanics and geotechnology, the book will be of interest to researchers and professionals involved in the various branches of rock mechanics and rock engineering. EUROCK 2018, organized by the Saint Petersburg Mining University, is a continuation of the successful series of ISRM symposia in Europe, which began in 1992 in Chester, UK.
Geomechanics and Geotechnics of Particulate Media: Proceedings of the International Symposium on Geomechanics and Geotechnics of Particulate Media, Ube, Japan, 12-14 September 2006
by Masayuki Hyodo Hidekazu Murata Yukio NakataMicroscopic re-examination of geomaterials consisting of aggregates can shed light on macroscopic behaviour, including compressibility, anisotropy, yielding, creep, cyclic liquefaction and shear rupture. As a result of this process of examination, new methods of material characterization emerge, leading to a greater degree of accuracy in the specification of new constitutive models with physically-meaningful parameters. The impetus behind this development is an increasing awareness on sustainability, leading to the more efficient use of recycled materials for geotechnical applications. The characteristics of recycled materials, such as compressibility and self-hardening, may differ significantly from those of natural materials, and it is crucial that evaluation is made from a specifically particulate perspective.
Geomechanics and Geotechnics: From Micro to Macro
by Mingjing Jiang; Fang Liu; Malcolm BoltonSoils are composed of grains but they are generally treated as continua in the classical framework of geomechanics. Their macroscopic response under loading, such as their non-linearity, yielding and anisotropy, is controlled by their micro-structure, the characteristics of the grains and the disposition of contacts between them. There have been rapid advances in technology both to investigate the microscopic properties of soils, and to simulate their granular behaviour explicitly through Discrete Element Method (DEM). DEM was originally used to reproduce element tests, but it is now being advocated for boundary-value problems. Geomechanics and Geotechnics: From Micro to Macro includes 174 peer-reviewed papers presented at the International Symposium on Geomechanics and Geotechnics: From Micro to Macro (IS-Shanghai 2010, Shanghai, China, 10-12 October 2010). The symposium provided an opportunity for the exchange of ideas and information on experiments, numerical models and engineering applications related to the discrete nature of geomaterials. The main goal was to explore further advances in the use of micro-geomechanical approaches, and by doing so to improve the understanding of macro-geomechanical phenomena by offering experiments, constitutive relations, numerical analyses and engineering applications associated with the discrete nature of geomaterials. Geomechanics and Geotechnics: From Micro to Macro will be of interest to academics and engineers involved in Soil Mechanics, Geomechanics, Geotechnical Engineering, Geoengineering and Civil Engineering.
Geomechanics and Geotechnics: From Micro to Macro
Soils are composed of grains but they are generally treated as continua in the classical framework of geomechanics. Their macroscopic response under loading, such as their non-linearity, yielding and anisotropy, is controlled by their micro-structure, the characteristics of the grains and the disposition of contacts between them. There have been rapid advances in technology both to investigate the microscopic properties of soils, and to simulate their granular behaviour explicitly through Discrete Element Method (DEM). DEM was originally used to reproduce element tests, but it is now being advocated for boundary-value problems. Geomechanics and Geotechnics: From Micro to Macro includes 174 peer-reviewed papers presented at the International Symposium on Geomechanics and Geotechnics: From Micro to Macro (IS-Shanghai 2010, Shanghai, China, 10-12 October 2010). The symposium provided an opportunity for the exchange of ideas and information on experiments, numerical models and engineering applications related to the discrete nature of geomaterials. The main goal was to explore further advances in the use of micro-geomechanical approaches, and by doing so to improve the understanding of macro-geomechanical phenomena by offering experiments, constitutive relations, numerical analyses and engineering applications associated with the discrete nature of geomaterials. Geomechanics and Geotechnics: From Micro to Macro will be of interest to academics and engineers involved in Soil Mechanics, Geomechanics, Geotechnical Engineering, Geoengineering and Civil Engineering.
Geomechanics and Water Engineering in Environmental Management
by R. N. ChowdhuryDivided into four parts, this work presents integrated studies and regional and case studies, and covers environmental constraints and effects, and the behaviour of earth masses.
Geomechanics in CO2 Storage Facilities
by Gilles Pijaudier-Cabot Jean-Michel PereiraCO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage facilities, with particular attention given to coupled geomechanical problems.The book is divided into three parts. The first part is dedicated to transport processes and focuses on the efficiency of the storage complex and the evaluation of possible leakage paths. The second part deals with issues related to reservoir injectivity and the presence of fractures and occurrence of damage. The final part of the book concerns the serviceability and ageing of the geomaterials whose poromechanical properties may be altered by contact with the injected reactive fluid.
Geomechanics in Soil, Rock, and Environmental Engineering
by John SmallUtilizes both Computer- and Hand-Based Calculations… Modern practice in geomechanics is becoming increasingly reliant on computer-based software, much of which can be obtained through the Internet. In Geomechanics in Soil, Rock, and Environmental Engineering the application of these numerical techniques is examined not only for soil mechanics, but also for rock mechanics and environmental applications. … For Use in Complex Analysis It deals with the modern analysis of shallow foundations, deep foundations, retaining structures, and excavation and tunneling. In recent years, the environment has become more and more important, and so it also deals with municipal and mining waste and solutions for the disposal and containment of the waste. Many fresh solutions to problems are presented to enable more accurate and advanced designs to be carried out. A Practical Reference for Industry Professionals, This Illuminating Book: Offers a broad range of coverage in soil mechanics, rock mechanics, and environmental engineering Incorporates the author‘s more than 40 years of academic and practical design experience Describes the latest applications that have emerged in the last ten years Supplies references readily available online for futher research Geomechanics in Soil, Rock, and Environmental Engineering should appeal to students in their final undergraduate course in geomechanics or master’s students, and should also serve as a useful reference to practitioners in the field of geomechanics, reflecting the author’s background in both industry and academia.
Geomechanics of Coal Seams (ISTE Invoiced)
by Jean-Michel Pereira Matthieu VandammeGeomechanics of Coal Seams explores the evolving role of coal, transitioning from a historically criticized energy source tied to the Industrial Revolution, to a material with the potential to play a significant role in achieving net-zero greenhouse gas emissions. Traditionally used as raw material, coal now serves as a reservoir for natural gas or carbon dioxide storage, offering a path toward reducing global greenhouse gas emissions. Despite its promise, challenges remain, particularly regarding its geomechanical behavior. This book delves into the unique properties of coal, covering everything from geological foundations to numerical modeling. Aimed at students, researchers, and engineers, the book provides valuable insights applicable to other microporous materials.
Geomechanics of Marine Anchors
by Charles AubenyThis book provides a comprehensive guide for the analysis and design of anchor systems used for mooring offshore floating structures. Much of the experience is based on applications toward the offshore oil and gas industry, but the substantial potential for offshore renewable energy systems is addressed. The major types of anchors are described with respect to their basic design concept, advantages and limitations, appropriate framework for analysis, and observed performance. This book addresses all aspects of anchor behaviour related to anchor design including the installation performance, load capacity, deformation, and structural integrity of the anchor itself. Coverage is also provided of appurtenant components of anchor systems, in particular of anchor line/chain mechanics in the soil and water columns. Much of the material presented represents relatively new developments, including several new anchors which have been developed within the last decade, so the book will provide a useful compendium of information is largely scattered in journals and conference proceedings. This book is intended for engineers engaged in offshore geotechnics and marine engineers involved in mooring system and floating structure design. While the analytical methods presented in this text have a strong theoretical basis, the emphasis is on simplified computational formats accessible to design engineers.
Geomechanische Kontrollen der Rissentwicklung in Kreide und Mergel in der dänischen Nordsee: Verstehen und Vorhersagen von Riss-Systemen
by Michael John Welch Mikael LüthjeDieses Buch fasst neue Entdeckungen zur Rissbildung in Kreide zusammen. Basierend auf Studien in der dänischen Nordsee zeigt das Buch, wie Beobachtungen von Aufschlussanaloga, Bohrkernen und seismischen Daten genutzt werden können, um die Dichte, Verteilung und Geometrie natürlicher Risse in Kreide und Mergel zu charakterisieren. Laborversuche mit Kreideproben zeigen die Einflussfaktoren auf die geomechanischen Eigenschaften der Kreide und damit auf das Wachstum natürlicher Risse. Schließlich werden verschiedene Modellierungstechniken eingesetzt, um die mechanische Deformation in den Kreide-Strukturen der dänischen Nordsee zu untersuchen und die Rissverteilung sowie -geometrie im Untergrund vorherzusagen. Ein Verständnis der Rissdichte, -verteilung und -geometrie ist entscheidend für die Planung effizienter Strategien zur Fluidextraktion oder -injektion sowie zur CO2-Speicherung. Dieses Buch liefert das notwendige Wissen.
Geomembranes - Identification and Performance Testing
by A. Rollin J-M. RigoGeomembranes are increasingly being used in transportation, environmental and geotechnical applications to control gas and liquid movement. This book provides authoritative guidance on testing of geomembranes. It has been prepared by an international committee of experts under the auspices of RILEM, the International Union of Research and Testing L
Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing
by Eduardo Bayro-CorrochanoThe goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra.Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.
Geometric Algebra Applications Vol. II: Robot Modelling and Control
by Eduardo Bayro-CorrochanoThis book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.
Geometric Algebra Applications Vol. III: Integral Transforms, Machine Learning, and Quantum Computing
by Eduardo Bayro-CorrochanoThe goal of Geometric Algebra Applications Vol. III: Integral Transforms, Machine Learning, and Quantum Computing is to present a unified mathematical treatment of diverse problems in the general domain like Clifford Fourier Transforms, Deep Learning and Geometric Algebra Convolutional Neural Networks, Quaternion Quantum Fourier Transform and Geometric Quantum Computing. Topics and features · Introduces nonspecialists to Clifford, or geometric algebra and by example encourages the reader to learn to compute using geometric entities and geometric formulations. · A study in depth for applications of Lie group theory, Lie algebra, projective geometry, and the algebra of incidence using the conformal geometric algebra. · Features the computing frameworks of the linear model n-dimensional affine plane and the nonlinear model of Euclidean space known as the horosphere, and addresses the relationships of these models to conformal, affine, and projective geometries. · Includes a thorough study of Integral transforms: Quaternion and Clifford Transforms, quaternion analytic signal, monogenic signals, Hilbert transform, Riesz transform, Clifford Fourier Transform, Quaternion Wavelet transforms, Quaternion Quantum Fourier Transform, 3D Radon Transform and Hough-Transform in geometric algebra. · Color image processing using the color model HSV, Quaternion Split rotors and motors, and the space-time Lorentz transform. · Geometric neural computing using Split Quaternions, Geometric Algebra neural networks, Clifford Support Vector Machine and Neuro Control. · Thorough discussion of several tasks of computer vision, graphics, neurocomputing, and robotics. machine learning, Deep Learning and CNNs, and Geometric Quantum Computing using the geometric algebra framework. · 130 exercises and hints for the development of future computer software packages for extensive calculations in geometric algebra. An entire section is dedicated to explaining how one should write the subroutines in C++, Phyton, Matlab, and Maple to carry out efficient geometric computations in the geometric algebra framework. Furthermore, it is shown how program code can be optimized for real-time computations. The book is an essential resource for applied mathematicians, physicists, computer scientists, graphics engineering, AI and Machine Learning researchers, roboticists and mechanical and electrical engineers, neurocomputing researchers, neuroscientists, and quantum computing specialists. It clarifies and demonstrates the importance of geometric computing for building autonomous systems and pushes forward advances in geometric cybernetics research.
Geometric Continuum Mechanics (Advances in Mechanics and Mathematics #42)
by Marcelo Epstein Reuven SegevThis contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include:Global stress and hyper-stress theoriesApplications of de Rham currents to singular dislocationsManifolds of mappings for continuum mechanicsKinematics of defects in solid crystalsGeometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.
Geometric Continuum Mechanics and Induced Beam Theories
by Simon R. EugsterThis research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
Geometric Control of Fracture and Topological Metamaterials (Springer Theses)
by Noah MitchellThis thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
Geometric Design of Roads Handbook
by Keith WolhuterExplore the Art and Science of Geometric DesignThe Geometric Design of Roads Handbook covers the design of the visible elements of the road-its horizontal and vertical alignments, the cross-section, intersections, and interchanges. Good practice allows the smooth and safe flow of traffic as well as easy maintenance. Geometric design is covered in d
Geometric Dimensioning and Tolerancing: Applications and Techniques for Use in Design, Manufacturing, and Inspection (Mechanical Engineering #96)
by James D. MeadowsExplaining the symbology of dimensioning and tolerancing and introducing a step-by-step system for geometric definition, this book provides examples for the application of geometric controls. The author breaks down the language of geometric product definition into a series of steps that consist of significant questions to be asked at any point in the product definition. He addresses functional requirements and manufacturing techniques, measurement, inspection, and gaging procedures. The book illustrates how symbology is best utilized, in what order it should be applied, and how each geometric control anticipates, integrates, and complements all other geometric controls on a part and in an assembly.
Geometric Dimensioning and Tolerancing: Workbook and Answerbook (Mechanical Engineering #112)
by James D. MeadowsGeometric Dimensioning and Tolerancing: Workbook and Answerbook offers a host of effective examples that utilize the concepts discussed in the reference/text--covering all facets of geometric dimensioning and tolerancing, measurement, inspection, and gauging applicable in any on-the-job situation. The Workbook and Answerbook is a companion to Geometric Dimensioning and Tolerancing: Applications for use in Design, Manufacturing, and Inspection (ISBN: 0-8247-9309-9) and follows the reference text chapter by chapter.
Geometric Feature-Based Fiber Optic Surface Plasmon Resonance Sensors (Springer Tracts in Electrical and Electronics Engineering)
by Santosh Kumar Sanjeev Kumar Raghuwanshi Ritesh KumarThis book focuses on the surface plasmon resonance (SPR) technique covering fibre optic sensor research. It highlights recent advancements in geometric feature-based fibre optic SPR sensors for chemical/biochemical/biosensor applications. The contents also discuss the principle of the SPR sensing technique as well as various designs of fibre optic SPR probes for improving sensor sensitivity. It also includes numerous examples of SPR-based fibre optic sensors with various geometric (such as U-type, taper type, D-type, and interferometric-based) sensors. This volume will be a useful reference to those in academia and industry especially researchers with useful information focusing on fibre optic SPR sensors.
Geometric Mechanics and Its Applications
by Chuan Xiao Weipeng Hu Zichen DengTo make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
Geometric Method for Type Synthesis of Parallel Manipulators (Springer Tracts in Mechanical Engineering)
by Qinchuan Li Jacques M. Hervé Wei YeThis book focuses on the synthesis of lower-mobility parallel manipulators, presenting a group-theory-based method that has the advantage of being geometrically intrinsic. Rotations and translations of a rigid body as well as a combination of the two can be expressed and handled elegantly using the group algebraic structure of the set of rigid-body displacements. The book gathers the authors’ research results, which were previously scattered in various journals and conference proceedings, presenting them in a unified form. Using the presented method, it reveals numerous novel architectures of lower-mobility parallel manipulators, which are of interest to those in the robotics community. More importantly, readers can use the method and tool to develop new types of lower-mobility parallel manipulators independently.
Geometric Methods in Signal and Image Analysis
by Hamid Krim A. Ben HamzaThis comprehensive guide offers a new approach for developing and implementing robust computational methodologies that uncover the key geometric and topological information from signals and images. With the help of detailed real-world examples and applications, readers will learn how to solve complex signal and image processing problems in fields ranging from remote sensing to medical imaging, bioinformatics, robotics, security, and defence. With an emphasis on intuitive and application-driven arguments, this text covers not only a range of methods in use today, but also introduces promising new developments for the future, bringing the reader up-to-date with the state of the art in signal and image analysis. Covering basic principles as well as advanced concepts and applications, and with examples and homework exercises, this is an invaluable resource for graduate students, researchers, and industry practitioners in a range of fields including signal and image processing, biomedical engineering, and computer graphics.