- Table View
- List View
Graphene Chemistry
by De-En Jiang Zhongfang ChenWhat are the chemical aspects of graphene as a novel 2D material and how do they relate to the molecular structure? This book addresses these important questions from a theoretical and computational standpoint. Graphene Chemistry: Theoretical Perspectives presents recent exciting developments to correlate graphene's properties and functions to its structure through state-of-the-art computational studies. This book focuses on the chemistry aspect of the structure-property relationship for many fascinating derivatives of graphene; various properties such as electronic structure, magnetism, and chemical reactivity, as well as potential applications in energy storage, catalysis, and nanoelectronics are covered. The book also includes two chapters with significant experimental portions, demonstrating how deep insights can be obtained by joint experimental and theoretical efforts. Topics covered include:Graphene ribbons: Edges, magnetism, preparation from unzipping, and electronic transportNanographenes: Properties, reactivity, and synthesisClar sextet rule in nanographene and graphene nanoribbonsPorous graphene, nanomeshes, and graphene-based architecture and assembliesDoped graphene: Theory, synthesis, characterization and applicationsMechanisms of graphene growth in chemical vapor depositionSurface adsorption and functionalization of grapheneConversion between graphene and graphene oxideApplications in gas separation, hydrogen storage, and catalysisGraphene Chemistry: Theoretical Perspectives provides a useful overview for computational and theoretical chemists who are active in this field and those who have not studied graphene before. It is also a valuable resource for experimentalist scientists working on graphene and related materials, who will benefit from many concepts and properties discussed here.
Graphene Field-Effect Transistor Biosensors
by Yan Zhao Tao Han Shiyu Wang Zakir HossainIn this monograph, the graphene-based field-effect transistor (FET) biosensors are shown to be an emerging sensing platform. Divided into two parts the first set of chapters are devoted to basic knowledge of graphene, graphene FET and its biosensing. In the second part of this book the applications of graphene FET biosensors combined with various biotechnologies are presented. As well as discussing the existing technologies the authors also introduce their own ideas and concepts. Finally the remaining problems in graphene FET biosensors are discussed, along with proposed solutions and prospects for future applications. This monograph allows readers to grasp the basic knowledge and future direction of graphene-based FET biosensors.
Graphene Field-Effect Transistors: Advanced Bioelectronic Devices for Sensing Applications
by Wolfgang Knoll Omar AzzaroniGraphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
Graphene Functionalization Strategies: From Synthesis to Applications (Carbon Nanostructures)
by Mohammad Jawaid Abdullah M. Asiri Anish Khan Bernaurdshaw NeppolianThis book discusses various aspects of graphene fictionalization strategies from inorganic oxides and organic moieties including preparation, design, and characterization of functionalization material and its applications. Including illustrations and tables summarizing the latest research on manufacturing, design, characterization and applications of graphene functionalization, it describes graphene functionalization using different techniques and materials and highlights the latest technologies in the field of manufacturing and design. This book is a valuable reference resource for lecturers, students, researchers and industrialists working in the field of material science, especially polymer composites.
Graphene Materials
by Ashutosh Tiwari Mikael SyväjärviGraphene Materials: Fundamentals and Emerging Applications brings together innovative methodologies with research and development strategies to provide a detailed state-of-the-art overview of the processing, properties, and technology developments of graphene materials and their wide-ranging applications. The applications areas covered are biosensing, energy storage, environmental monitoring, and health. The book discusses the various methods that have been developed for the preparation and functionalization of single-layered graphene nanosheets. These form the essential building blocks for the bottom-up architecture of various graphene materials because they possess unique physico-chemical properties such as large surface areas, good conductivity and mechanical strength, high thermal stability and desirable flexibility. The electronic behavior in graphene, such as dirac fermions obtained due to the interaction with the ions of the lattice, has led to the discovery of novel miracles like Klein tunneling in carbon-based solid state systems and the so-called half-integer quantum Hall effect. The combination of these properties makes graphene a highly desirable material for applications. In particular, Graphene Materials: Fundamentals and Emerging Applications has chapters covering: - Graphene and related two-dimensional nanomaterials - Surface functionalization of graphene - Functional three-dimensional graphene networks - Covalent graphene-polymer nanocomposites - Magnesium matrix composites reinforced with graphene nanoplatelets - Graphene derivatives for energy storage - Graphene nanocomposite for high performance supercapacitors - Graphene nanocomposite-based bulk hetro-junction solar cells - Graphene bimetallic nanocatalysts foam for energy storage and biosensing - Graphene nanocomposites-based for electrochemical sensors - Graphene electrodes for health and environmental monitoring
Graphene Nanoelectronics
by Raghu MuraliGraphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries (Springer Theses)
by Dongliang ChaoResearch on deformable and wearable electronics has promoted an increasing demand for next-generation power sources with high energy/power density that are low cost, lightweight, thin and flexible. One key challenge in flexible electrochemical energy storage devices is the development of reliable electrodes using open-framework materials with robust structures and high performance. Based on an exploration of 3D porous graphene as a flexible substrate, this book constructs free-standing, binder-free, 3D array electrodes for use in batteries, and demonstrates the reasons for the research transformation from Li to Na batteries. It incorporates the first principles of computational investigation and in situ XRD, Raman observations to systematically reveal the working mechanism of the electrodes and structure evolution during ion insertion/extraction. These encouraging results and proposed mechanisms may accelerate further development of high rate batteries using smart nanoengineering of the electrode materials, which make “Na ion battery could be better than Li ion battery” possible.
Graphene Optoelectronics
by Abdul Rashid bin M. YusoffThis first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics. The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-state chemists and solid-state physicists alike.
Graphene Photonics
by Jia-Ming Liu I-Tan LinUnderstand the fundamental concepts, theoretical background, major experimental observations, and device applications of graphene photonics with this self-contained text. Systematically and rigorously developing each concept and theoretical model from the ground up, it guides readers through the major topics, from basic properties and band structure to electronic, optical, optoelectronic, and nonlinear optical properties, and plasmonics and photonic devices. The connections between theory, modeling, experiment, and device concepts are demonstrated throughout, and every optical process is analyzed through formal electromagnetic analysis. Suitable for both self-study and a one-semester or one-quarter course, this is the ideal text for graduate students and researchers in photonics, optoelectronics, nanoscience and nanotechnology, and optical and solid-state physics, who are working in this rapidly developing field.
Graphene Quantum Dots: The Emerging Luminescent Nanolights (Materials Horizons: From Nature to Nanomaterials)
by Sabu Thomas T. Daniel Thangadurai N. Manjubaashini D. NatarajThis book explores various unique characteristics of graphene quantum dots and their potential applications in a variety of fields. It provides an in-depth investigation of the present state of the art in graphene quantum dots, composites, hybrid structures, and other related topics. Various topics covered in this book are synthesis and characterization of graphene quantum dots, modelling and simulation, nanoscale applications nanosensors, bio-nanosensors, energy applications, industrial applications, healthcare applications, textile applications, and many more. Given the contents, this book is highly useful for material scientists and also the researchers and professionals in the areas of chemistry and physics.
Graphene Science Handbook: Applications and Industrialization
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniExplore the Practical Applications and Promising Developments of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic
Graphene Science Handbook: Electrical and Optical Properties
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniDiscover the Unique Electron Transport Properties of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and s
Graphene Science Handbook: Fabrication Methods
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniExplores Chemical-Based, Non-Chemical Based, and Advanced Fabrication MethodsThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovolt
Graphene Science Handbook: Mechanical and Chemical Properties
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniAn In-Depth Look at the Outstanding Properties of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supe
Graphene Science Handbook: Nanostructure and Atomic Arrangement
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniExamines the Low Resistivity, High Mobility, and Zero Bandgap of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic
Graphene Science Handbook: Size-Dependent Properties
by Mahmood Aliofkhazraei Cengiz S. Ozkan Nasar Ali William I. Milne Stanislaw Mitura Juana L. GervasoniSize Up the Short- and Long-Term Effects of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapac
Graphene Technology: From Laboratory to Fabrication
by Soroush Nazarpour Stephen R. WaiteFilling the gap between publications for industrial developers and academic researchers on graphene synthesis and its applications, this book presents the essential aspects for the successful upscaling of graphene production. After an introduction to graphene, its synthesis and characterization, the text covers a wide variety of graphene composites and compounds. The larger part of the book discusses various applications where graphene has been successfully integrated into technologies, including uses in the energy sector, oil and gas industry, biomedical areas, sensors and coatings. Finally, the book concludes with a summary and a look at the future of graphene technology, including a market review. With its focus on applications, this is equally useful for both academic and industrial users.
Graphene and Carbon Nanotubes for Advanced Lithium Ion Batteries
by Stelbin Peter Figerez Raghavan PrasanthThis title covers the fundamentals of carbon nanomaterials in a logical and clear manner to make concepts accessible to researchers from different disciplines. It summarizes in a comprehensive manner recent technological and scientific accomplishments in the area of carbon nanomaterials and their application in lithium ion batteries The book also addresses all the components anodes, cathodes and electrolytes of lithium ion battery and discusses the technology of lithium ion batteries that can safely operate at high temperature.
Graphene and Nanoparticles Hybrid Nanocomposites: From Preparation to Applications (Composites Science and Technology)
by Mohammad Jawaid Abou el Kacem Qaiss Rachid BouhfidThis book covers the recent research on nanomaterials and nanotechnology based on the hybridization of graphene with other nanoparticles. With their simple synthesis, nanoscale dimensions, high aspect ratio, mechanical, electrical and thermal properties, graphene and its hybridized materials have witnessed a great interest, and the chapters in this book cover the spectrum of research from the preparation and synthesis of novel nanocomposites to their potential use in aeronautic, automative, energy and environmental applications. Written by respected researchers from both industry and academia, this book is of interest to researchers and students working on nanomaterials.
Graphene and its Derivatives: Water/Wastewater Treatment and Other Environmental Applications (Materials Horizons: From Nature to Nanomaterials)
by S. C. Sharma Kaustubha Mohanty S. Saran B. E. Kumara SwamyThis book describes the essential characteristics of graphene, graphene oxide, reduced graphene oxide, and its nanocomposite and their applications in water and wastewater treatment and other environmental issues. The book introduces each topic in detail, discusses the basic principles, and analyzes and summarizes recent developments in the field. Various topics covered in this book include role of graphene as a potential material in photocatalytic organic pollutant degradation, water splitting applications, capacitive de-ionization techniques, air purification, gas adsorption, and decontamination of pathogenic microorganisms. Given the contents, the book is useful for students, researchers, and professionals working in the area environmental science and materials, especially graphene oxide, graphene, and graphene nanocomposite.
Graphene for Defense and Security
by Andre U. SokolnikovGraphene is giving new impetus to the electronics industry because its band structure allows its properties to be dramatically altered and modified by chemical or electrochemical doping methods. This book provides a comprehensive source of information about graphene as a phenomenon, its physics and its mechanical and chemical properties in the light of the latest scientific and technological discoveries. The major focus of the book is on military and special applications since that is where the biggest investments are made.
Graphene for Electrochemical Energy Storage: Energizing the Future (Lecture Notes in Nanoscale Science and Technology #24)
by Chander Prakash Virat KhannaThis book is a comprehensive overview of the latest developments in the field of graphene-based electrochemical energy storage devices. Graphene is considered one of the most promising materials for developing high-performance electrochemical energy storage devices due to its large surface area, high electrical conductivity, and superior mechanical strength. This book highlights its fundamental properties, synthesis methods, and various electrochemical energy storage applications such as in supercapacitors, batteries, and fuel cells. The first chapter introduces the electronic, mechanical, and thermal properties of graphene and discusses various synthesis methods such as mechanical exfoliation, chemical vapor deposition, and epitaxial growth. Additionally, it describes the functionalization of graphene to enhance its characteristics for electrochemical energy storage applications. The second chapter focuses on the application of graphene in supercapacitors, energy storage devices that require high power density. It details different types of supercapacitors such as electrochemical capacitors, pseudo capacitors, and hybrid capacitors and discusses how graphene can enhance their performance. The third chapter covers the use of graphene in batteries, describing how graphene-based anodes and cathodes improve energy density, cycling stability, rate capability across various battery types including lithium-ion, sodium-ion, and zinc-ion batteries. The final chapter is dedicated to the use of graphene in fuel cells, electrochemical devices that transform chemical energy into electrical power, and describes how graphene-based materials can be utilized as catalysts or supports within fuel cells for improved performance and durability. Various types of fuel cells such as proton exchange membrane fuel cells, direct methanol fuel cells, and solid oxide fuel cells are examined. The book concludes by highlighting the future prospects and challenges in graphene-based electrochemical energy storage applications. Written in a succinct and clear manner, this book serves as a modern reference on the topic and is a valuable resource for researchers, scientists, and engineers working in the area of energy storage.
Graphene for Post-Moore Silicon Optoelectronics
by Yang Xu Bin Yu Ali Imran Khurram Shehzad Srikrishna Chanakya BodepudiGraphene for Post-Moore Silicon Optoelectronics Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.
Graphene for Transparent Conductors
by Qingbin Zheng Jang-Kyo KimThis book provides a systematic presentation of the principles and practices behind the synthesis and functionalization of graphene and grapheme oxide (GO), as well as the fabrication techniques for transparent conductors from these materials. Transparent conductors are used in a wide variety of photoelectronic and photovoltaic devices, such as liquid crystal displays (LCDs), solar cells, optical communication devices, and solid-state lighting. Thin films made from indium tin oxide (ITO) have thus far been the dominant source of transparent conductors, and now account for 50% of indium consumption. However, the price of Indium has increased 1000% in the last 10 years. Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has attracted significant interest because of its unique transport properties. Because of their high optical transmittance and electrical conductivity, thin film electrodes made from graphene nanosheets have been considered an ideal candidate to replace expensive ITO films. Graphene for Transparent Conductors offers a systematic presentation of the principles, theories and technical practices behind the structure-property relationship of the thin films, which are the key to the successful development of high-performance transparent conductors. At the same time, the unique perspectives provided in the applications of graphene and GO as transparent conductors will serve as a general guide to the design and fabrication of thin film materials for specific applications.
Graphene from Natural Sources: Synthesis, Characterization, and Applications
by Amir Al-AhmedThis book examines the synthesis of graphene obtained from different natural raw materials and waste products as a low-cost, environmentally friendly alternative that delivers a quality final product. Expert researchers review potential sources of natural raw materials and waste products, methods or characterization, graphene synthesis considerations, and important applications. FEATURES Explores the different approaches to the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) from natural and industrial carbonaceous wastes Outlines the modification and characterization methods of GO and rGO Addresses the characterization methods of GO and rGO Details applications of GO and rGO created from natural sources Graphene is a multidisciplinary material with applications in almost every sector of science and engineering. Graphene from Natural Sources: Synthesis, Characterization, and Applications is a noteworthy reference for material scientists and engineers in academia and industry interested in reducing costs and employing green synthesis methods in their work.