- Table View
- List View
Graphene Based Biopolymer Nanocomposites (Composites Science and Technology)
by Bhasha Sharma Purnima JainThe book comprehensively covers the different topics of graphene based biopolymer and nanocomposites, mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications.The book will address and rectify the complications of using plastics that are non-degradable and has abhorrent impact on environment. The limitations of properties of biopolymer can be vanquished by employing graphene as a nanomaterial. Outstanding properties of graphene in accordance with biopolymer can be utilized to develop applications like water treatment, tissue engineering, photo-catalysts, super-absorbents. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry, and engineering courses.
Graphene-based Energy Devices
by A. Rashid YusoffThis first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.
Graphene-Based Materials: Science and Technology
by Subbiah Alwarappan Ashok KumarContinuously studied since its discovery, graphene offers truly unique opportunities, because unlike most semiconductor systems, its 2D electronic states are not buried deep under the surface and it can be easily accessed directly by tunneling or by other local probes. An in-depth analysis of recent advances in graphene research, Graphene-Based Mat
Graphene-Based Materials as Adsorbents for Wastewater Decontamination
by Suprakas Sinha Ray Jonathan Tersur Orasugh Lesego Tabea Temane Sarah Constance MotshekgaThis book aims to provide a fundamental grasp of graphene-based materials (GAMs) and their adsorption process. The effect of diverse process parameters, including pH, temperature, agitation, competing ions, etc., on the adsorption performance of GAMs as well as their recent and relevant applications in biomedical fields, are discussed. The current challenges and future outlook have been addressed as an independent chapter, and the recyclability of these adsorbent materials has also been covered.Features: Focuses on graphene-based materials as adsorbents to remove contaminants from wastewater. Includes detailed computational and statistical analyses and cost comparison points. Compares the performance of graphene-based materials as adsorbents in the context of various other reported adsorbents, including other 2D materials, such as WS2 and BN. Provides fundamental comprehension of the graphene-based materials’ adsorption process. Discusses the recyclable nature of graphene-based materials, as well as approaches used. This book has been aimed at graduate students and researchers in wastewater treatment, environmental, materials, and chemical engineering.
Graphene-Based Photocatalysts: From Fundamentals to Applications (Advanced Structured Materials #217)
by Mohd Rafie Johan Muhammad Nihal Naseer Maryam Ikram Asad Ali Zaidi Yasmin Abdul WahabThis book provides a comprehensive overview of graphene-based photocatalysts, from the fundamentals to the applications. Graphene, the special material of the twenty-first century, has unique properties that make it an ideal candidate for use in photocatalytic activities. The book explores the basic principles of photocatalysis, including its mechanism and classification, and provides a historical overview and future prospects for the field. The synthesis and characterization of graphene for photocatalytic applications are discussed in detail, including controlling factors for graphene synthesis and its unique properties that make it an effective photocatalyst. It also covers a range of applications for graphene-based photocatalysts, including photocatalytic degradation of pollutants, hydrogen generation, water splitting, disinfection, and other potential uses. In addition, the book addresses strategies for enhancing photocatalytic activity and the factors that affect it. The economic perspective of cost-benefit analysis and life cycle assessment are also discussed. It is a valuable resource for researchers, academics, and professionals working in the field of photocatalysis and ideal for those interested in the latest developments in graphene-based photocatalysts and their potential applications, including researchers, academics, and professionals in the fields of materials science, chemistry, and chemical engineering.
Graphene-Based Photocatalysts for Hydrogen Production and Environmental Remediation (Advanced Structured Materials #219)
by Muhammad Nihal Naseer Maryam Ikram Asad A. Zaidi Yasmin Abdul Wahab Mohd Rafie JohanThis book delves into the cutting-edge applications of graphene-based photocatalysts, unveiling their immense potential in addressing two critical global challenges: sustainable hydrogen production and environmental remediation. Through insightful analysis of the state of the art, the book highlights the remarkable capabilities of these innovative materials in harnessing the power of light to drive chemical reactions. By exploring the synthesis, characterization, and mechanisms of graphene-based photocatalysts, the book provides knowledge not only about the fundamental concepts but also recent advancements in water splitting for hydrogen generation, as well as the degradation of persistent organic pollutants and greenhouse gases. With its extensive coverage and interdisciplinary approach, this resource is tailored for a diverse readership, including materials scientists, chemists, photocatalysis experts, environmental engineers, and professionals working in the fields of renewable energy, water treatment, and environmental remediation.
Graphene-Based Polymer Nanocomposites: Models and Applications (SpringerBriefs in Applied Sciences and Technology)
by Andriy Nadtochiy Alla M. Gorb Borys M. Gorelov Oleksiy Polovina Oleg KorotchenkovThis book highlights the properties of nanocomposite material, especially with inputs from the interphase effects, which are crucial for their diverse applications. It comprises chapters on graphene as a revolutionary material with exceptional electronic, optical, mechanical and thermal properties, and extraordinary properties of graphene based polymer composite materials, especially emphasizing on important role of the filler/matrix interphase areas. The applications of these composite nanomaterials are briefly discussed throughout the book. In particular, there is currently an outburst in studying polymer-based nanocomposites for various functional applications such as energy storage, thermoelectrics, stretchable electronics, electromagnetic shielding, super-capacitors and lithium-ion batteries. Emphasis is also given to the impact of the nanocomposites on advanced healthcare materials, drug delivery and biomedical applications.
Graphene-Based Polymer Nanocomposites in Electronics
by Kishor Kumar Sadasivuni Deepalekshmi Ponnamma Jaehwan Kim Sabu ThomasThis book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
Graphene-Bearing Polymer Composites: Applications to Electromagnetic Interference Shielding and Flame-Retardant Materials (Springer Series in Materials Science #340)
by Suprakas Sinha Ray Lesego Tabea Temane Jonathan Tersur OrasughThis book explores recent developments in electrically conducting graphene-containing polymer composites for electromagnetic interference (EMI) shielding and flame-retardant applications. It emphasizes the exceptional performance of graphene and graphene-based materials in these composites. The comprehensive overview covers the fundamental principles of EMI shielding, flame retardancy, and polymer composite processing, addressing critical aspects related to the development of advanced graphene-containing materials. The book aims to fill the gap in reviews that specifically focus on EMI shielding and flame retardancy fundamentals, processing techniques, and application-specific developments.An important aspect discussed is the customization of electrical properties through blend morphology modification and selective localization of graphene-based nanofillers. This aspect has not been adequately covered in previous articles or books. By addressing this research gap,the book becomes an essential resource for researchers seeking a deeper understanding of molecular aspects and result interpretation. With a focus on processing advanced functional composite materials for EMI shielding and flame retardancy, the book promotes a molecular understanding of the subject matter. It is expected to pave the way for future advancements in advanced polymer composites. Researchers and scholars will find this book invaluable as it provides a holistic overview of fundamental concepts and insights into ongoing research intricacies.
Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications
by Wei Fan Longsheng Zhang Tianxi LiuThis book describes various carbon nanomaterials and their unique properties, and offers a detailed introduction to graphene-carbon nanotube (CNT) hybrids. It demonstrates strategies for the hybridization of CNTs with graphene, which fully utilize the synergistic effect between graphene and CNTs. It also presents a wide range of applications of graphene-CNT hybrids as novel materials for energy storage and environmental remediation. Further, it discusses the preparation, structures and properties of graphene-CNT hybrids, providing interesting examples of three types of graphene-CNT hybrids with different nanostructures. This book is of interest to a wide readership in various fields of materials science and engineering.
Graphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications (Devices, Circuits, and Systems #12)
by James E. Morris Kris IniewskiGraphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications offers a comprehensive review of groundbreaking research in nanofabrication technology and explores myriad applications that this technology has enabled. The book examines the historical evolution and emerging trends of nanofabrication and supplies an analytical understanding of some of the most important underlying nanofabrication technologies, with an emphasis on graphene, carbon nanotubes (CNTs), and nanowires. Featuring contributions by experts from academia and industry around the world, this book presents cutting-edge nanofabrication research in a wide range of areas. Topics include: CNT electrodynamics and signal propagation models Electronic structure calculations of a graphene–hexagonal boron nitride interface to aid the understanding of experimental devices based on these heterostructures How a laser field would modify the electronic structure and transport response of graphene, to generate bandgaps The fabrication of transparent CNT electrodes for organic light-emitting diodes Direct graphene growth on dielectric substrates, and potential applications in electronic and spintronic devices CNTs as a promising candidate for next-generation interconnect conductors CMOS–CNT integration approaches, including the promising localized heating CNT synthesis method CNTs in electrochemical and optical biosensors The synthesis of diamondoids by pulsed laser ablation plasmas generated in supercritical fluids, and possible applications The use of DNA nanostructures in lithography CMOS-compatible silicon nanowire biosensors The use of titanium oxide-B nanowires to detect explosive vapors The properties of protective layers on silver nanoparticles for ink-jet printing Nanostructured thin-film production using microreactors A one-stop reference for professionals, researchers, and graduate students working in nanofabrication, this book will also be useful for investors who want an overview of the current nanofabrication landscape.
Graphene Chemistry
by De-En Jiang Zhongfang ChenWhat are the chemical aspects of graphene as a novel 2D material and how do they relate to the molecular structure? This book addresses these important questions from a theoretical and computational standpoint. Graphene Chemistry: Theoretical Perspectives presents recent exciting developments to correlate graphene's properties and functions to its structure through state-of-the-art computational studies. This book focuses on the chemistry aspect of the structure-property relationship for many fascinating derivatives of graphene; various properties such as electronic structure, magnetism, and chemical reactivity, as well as potential applications in energy storage, catalysis, and nanoelectronics are covered. The book also includes two chapters with significant experimental portions, demonstrating how deep insights can be obtained by joint experimental and theoretical efforts. Topics covered include:Graphene ribbons: Edges, magnetism, preparation from unzipping, and electronic transportNanographenes: Properties, reactivity, and synthesisClar sextet rule in nanographene and graphene nanoribbonsPorous graphene, nanomeshes, and graphene-based architecture and assembliesDoped graphene: Theory, synthesis, characterization and applicationsMechanisms of graphene growth in chemical vapor depositionSurface adsorption and functionalization of grapheneConversion between graphene and graphene oxideApplications in gas separation, hydrogen storage, and catalysisGraphene Chemistry: Theoretical Perspectives provides a useful overview for computational and theoretical chemists who are active in this field and those who have not studied graphene before. It is also a valuable resource for experimentalist scientists working on graphene and related materials, who will benefit from many concepts and properties discussed here.
Graphene Field-Effect Transistor Biosensors
by Shiyu Wang Zakir Hossain Yan Zhao Tao HanIn this monograph, the graphene-based field-effect transistor (FET) biosensors are shown to be an emerging sensing platform. Divided into two parts the first set of chapters are devoted to basic knowledge of graphene, graphene FET and its biosensing. In the second part of this book the applications of graphene FET biosensors combined with various biotechnologies are presented. As well as discussing the existing technologies the authors also introduce their own ideas and concepts. Finally the remaining problems in graphene FET biosensors are discussed, along with proposed solutions and prospects for future applications. This monograph allows readers to grasp the basic knowledge and future direction of graphene-based FET biosensors.
Graphene Field-Effect Transistors: Advanced Bioelectronic Devices for Sensing Applications
by Omar Azzaroni Wolfgang KnollGraphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
Graphene for Defense and Security
by Andre U. SokolnikovGraphene is giving new impetus to the electronics industry because its band structure allows its properties to be dramatically altered and modified by chemical or electrochemical doping methods. This book provides a comprehensive source of information about graphene as a phenomenon, its physics and its mechanical and chemical properties in the light of the latest scientific and technological discoveries. The major focus of the book is on military and special applications since that is where the biggest investments are made.
Graphene for Post-Moore Silicon Optoelectronics
by Yang Xu Khurram Shehzad Srikrishna Chanakya Bodepudi Ali Imran Bin YuGraphene for Post-Moore Silicon Optoelectronics Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.
Graphene for Transparent Conductors
by Qingbin Zheng Jang-Kyo KimThis book provides a systematic presentation of the principles and practices behind the synthesis and functionalization of graphene and grapheme oxide (GO), as well as the fabrication techniques for transparent conductors from these materials. Transparent conductors are used in a wide variety of photoelectronic and photovoltaic devices, such as liquid crystal displays (LCDs), solar cells, optical communication devices, and solid-state lighting. Thin films made from indium tin oxide (ITO) have thus far been the dominant source of transparent conductors, and now account for 50% of indium consumption. However, the price of Indium has increased 1000% in the last 10 years. Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has attracted significant interest because of its unique transport properties. Because of their high optical transmittance and electrical conductivity, thin film electrodes made from graphene nanosheets have been considered an ideal candidate to replace expensive ITO films. Graphene for Transparent Conductors offers a systematic presentation of the principles, theories and technical practices behind the structure-property relationship of the thin films, which are the key to the successful development of high-performance transparent conductors. At the same time, the unique perspectives provided in the applications of graphene and GO as transparent conductors will serve as a general guide to the design and fabrication of thin film materials for specific applications.
Graphene from Natural Sources: Synthesis, Characterization, and Applications
by Amir Al-AhmedThis book examines the synthesis of graphene obtained from different natural raw materials and waste products as a low-cost, environmentally friendly alternative that delivers a quality final product. Expert researchers review potential sources of natural raw materials and waste products, methods or characterization, graphene synthesis considerations, and important applications. FEATURES Explores the different approaches to the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) from natural and industrial carbonaceous wastes Outlines the modification and characterization methods of GO and rGO Addresses the characterization methods of GO and rGO Details applications of GO and rGO created from natural sources Graphene is a multidisciplinary material with applications in almost every sector of science and engineering. Graphene from Natural Sources: Synthesis, Characterization, and Applications is a noteworthy reference for material scientists and engineers in academia and industry interested in reducing costs and employing green synthesis methods in their work.
Graphene Functionalization Strategies: From Synthesis to Applications (Carbon Nanostructures)
by Anish Khan Mohammad Jawaid Bernaurdshaw Neppolian Abdullah M. AsiriThis book discusses various aspects of graphene fictionalization strategies from inorganic oxides and organic moieties including preparation, design, and characterization of functionalization material and its applications. Including illustrations and tables summarizing the latest research on manufacturing, design, characterization and applications of graphene functionalization, it describes graphene functionalization using different techniques and materials and highlights the latest technologies in the field of manufacturing and design. This book is a valuable reference resource for lecturers, students, researchers and industrialists working in the field of material science, especially polymer composites.
Graphene Materials
by Ashutosh Tiwari Mikael SyväjärviGraphene Materials: Fundamentals and Emerging Applications brings together innovative methodologies with research and development strategies to provide a detailed state-of-the-art overview of the processing, properties, and technology developments of graphene materials and their wide-ranging applications. The applications areas covered are biosensing, energy storage, environmental monitoring, and health. The book discusses the various methods that have been developed for the preparation and functionalization of single-layered graphene nanosheets. These form the essential building blocks for the bottom-up architecture of various graphene materials because they possess unique physico-chemical properties such as large surface areas, good conductivity and mechanical strength, high thermal stability and desirable flexibility. The electronic behavior in graphene, such as dirac fermions obtained due to the interaction with the ions of the lattice, has led to the discovery of novel miracles like Klein tunneling in carbon-based solid state systems and the so-called half-integer quantum Hall effect. The combination of these properties makes graphene a highly desirable material for applications. In particular, Graphene Materials: Fundamentals and Emerging Applications has chapters covering: - Graphene and related two-dimensional nanomaterials - Surface functionalization of graphene - Functional three-dimensional graphene networks - Covalent graphene-polymer nanocomposites - Magnesium matrix composites reinforced with graphene nanoplatelets - Graphene derivatives for energy storage - Graphene nanocomposite for high performance supercapacitors - Graphene nanocomposite-based bulk hetro-junction solar cells - Graphene bimetallic nanocatalysts foam for energy storage and biosensing - Graphene nanocomposites-based for electrochemical sensors - Graphene electrodes for health and environmental monitoring
Graphene Nanoelectronics
by Raghu MuraliGraphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries (Springer Theses)
by Dongliang ChaoResearch on deformable and wearable electronics has promoted an increasing demand for next-generation power sources with high energy/power density that are low cost, lightweight, thin and flexible. One key challenge in flexible electrochemical energy storage devices is the development of reliable electrodes using open-framework materials with robust structures and high performance. Based on an exploration of 3D porous graphene as a flexible substrate, this book constructs free-standing, binder-free, 3D array electrodes for use in batteries, and demonstrates the reasons for the research transformation from Li to Na batteries. It incorporates the first principles of computational investigation and in situ XRD, Raman observations to systematically reveal the working mechanism of the electrodes and structure evolution during ion insertion/extraction. These encouraging results and proposed mechanisms may accelerate further development of high rate batteries using smart nanoengineering of the electrode materials, which make “Na ion battery could be better than Li ion battery” possible.
Graphene Optoelectronics
by Abdul Rashid bin M. YusoffThis first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics. The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-state chemists and solid-state physicists alike.
Graphene Photonics
by Jia-Ming Liu I-Tan LinUnderstand the fundamental concepts, theoretical background, major experimental observations, and device applications of graphene photonics with this self-contained text. Systematically and rigorously developing each concept and theoretical model from the ground up, it guides readers through the major topics, from basic properties and band structure to electronic, optical, optoelectronic, and nonlinear optical properties, and plasmonics and photonic devices. The connections between theory, modeling, experiment, and device concepts are demonstrated throughout, and every optical process is analyzed through formal electromagnetic analysis. Suitable for both self-study and a one-semester or one-quarter course, this is the ideal text for graduate students and researchers in photonics, optoelectronics, nanoscience and nanotechnology, and optical and solid-state physics, who are working in this rapidly developing field.
Graphene Quantum Dots: The Emerging Luminescent Nanolights (Materials Horizons: From Nature to Nanomaterials)
by Sabu Thomas T. Daniel Thangadurai N. Manjubaashini D. NatarajThis book explores various unique characteristics of graphene quantum dots and their potential applications in a variety of fields. It provides an in-depth investigation of the present state of the art in graphene quantum dots, composites, hybrid structures, and other related topics. Various topics covered in this book are synthesis and characterization of graphene quantum dots, modelling and simulation, nanoscale applications nanosensors, bio-nanosensors, energy applications, industrial applications, healthcare applications, textile applications, and many more. Given the contents, this book is highly useful for material scientists and also the researchers and professionals in the areas of chemistry and physics.